FULL PAPER

# Phylogeny of the genus Pythium and description of new genera

Shihomi Uzuhashi · Motoaki Tojo · Makoto Kakishima

Received: 7 July 2009/Accepted: 1 February 2010/Published online: 10 April 2010 © The Mycological Society of Japan and Springer 2010

**Abstract** Phylogeny of the genus *Pythium* is analyzed based on sequences of the large subunit ribosomal DNA D1/D2 region and cytochrome oxidase II gene region of *Pythium* isolates and comprehensive species of related taxa belonging to the Oomycetes. The phylogenetic trees show that the genus *Pythium* is a highly divergent group and divided into five well- or moderately supported monophyletic clades. Each clade is characterized by sporangial morphology such as globose, ovoid, elongated, or filamentous shapes. Based on phylogeny and morphology, the genus *Pythium* (s. str.) is emended, and four new genera, *Ovatisporangium*, *Globisporangium*, *Elongisporangium*, and *Pilasporangium*, are described and segregated from *Pythium* s. lato.

**Keywords** Molecular phylogeny · rDNA · Sporangia · Taxonomy

### Introduction

The genus *Pythium* belongs to the family Pythiaceae, order Pythiales, class Oomycetes, phylum Oomycota, and kingdom Chromista (Kirk et al. 2008). The genus is widely

S. Uzuhashi (⊠) · M. Kakishima Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan e-mail: maruto@sakura.cc.tsukuba.ac.jp

M. Kakishima e-mail: kaki@sakura.cc.tsukuba.ac.jp

#### M. Tojo

distributed throughout the world, and appropriately 150 species have been described (Kirk et al. 2008). The members are amphibious and ubiquitous and occupy several ecological niches (van der Plaäts-Niterink 1981). Several species are known as pathogens of various plants, and many of them show much wider host ranges than those of other related genera, such as Phytophthora. They generally cause rot of fruit, roots, and stems, and pre- or postemergence damping-off of seeds and seedlings. Other pathogenic species are restricted to one or closely related host species; for example P. porphyrae M. Takah. & M. Sasaki causes red rot of marine red algae (Takahashi et al. 1977). A few species can cause disease in restricted environments; for example P. okanoganense P. E. Lipps causes snow rot under snow (Lipps 1980). In addition to these plant pathogens, P. guiyangense X. Q. Su is a parasite of mosquito larvae (Su 2006) and P. insidiosum De Cock, L. Mend., A. A. Padhye, Ajello & Kaufman is a mammalian pathogen (de Cock et al. 1987). On the other hand, many species are known to inhabit various soils, such as cultivated and uncultivated fields including forest, pastures, or arid places as saprophytes; however, Pythium species in uncultivated fields have not been the subject of much study. Consequently, the distribution, ecological roles, and physiological features of the species have not been sufficiently elucidated. Recently, many new Pythium species have been described based on strains isolated from uncultivated fields or seminatural environments in several countries (Nechwatal and Oßwald 2003; Allain-Boulé et al. 2004; Ko et al. 2004; Nechwatal et al. 2005; Nechwatal and Mendgen 2006; Paul 2006; Belbahri et al. 2008; de Cock et al. 2008; Moralejo et al. 2008; Paul and Bala 2008; Uzuhashi et al. 2009). This suggests that more unidentified species exist in soils of uncultivated fields, and thus a survey of Pythium species is warranted. Investigations of

Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan e-mail: tojo@plant.osakafu-u.ac.jp

*Pythium* species in these relatively unexplored habitats are important to understand not only their ecological roles and physiological features but also the taxonomy and phylogeny of the genus.

The genus Pythium has the following morphological characteristics (van der Plaäts-Niterink 1981): Hyphae are hyaline and coenocytic without cross septa. Two types of sporangia are present, filamentous and globose. Zoospores develop in a vesicle, which is formed at the tip of a discharge tube derived from a sporangium. Oospores are formed in smooth or ornamented oogonia after fertilization with paragynous or hypogynous antheridia. The oospore fills the whole oogonium (plerotic) or has some space between the walls of the oogoniu and oospore (aplerotic). The formation of zoospores within a vesicle is characteristic of Pythium and different from morphologically similar genera, such as Phytophthora and Halophytophthora. On the other hand, the process of zoospore formation is also similar in the genus Lagenidium, but this genus shows endobiotic and holocarpic features that have not been reported in any Pythium species (Dick 2001a).

The genus Pythium was originally described by Pringsheim in 1858, and P. monospermum Pringsh. was selected as the type species. Since then, the classification has been changed by several researchers based on morphological characteristics. Fischer (1892) divided the genus into three subgenera, Aphragmium, Nematosporangium, and Sphaerosporangium, based on sporangial morphology. The first subgenus was composed of species with noninflated filamentous sporangia without a septum that delimited sporangia and hypha. The second subgenus included species with filamentous sporangia delimited from the vegetative hyphae by septa. The last subgenus was characterized by (sub-)globose sporangia delimited by septa from the vegetative hyphae. Schröter (1897) first emphasized the importance of differences between filamentous globose shapes and combined two subgenera, and Aphragmium and Nematosporangium, into one genus, Nematosporangium, and treated Sphaerosporangium as the genus Pythium. Two subgenera, Eupythium and Artotrogus were also placed within the genus Pythium by Schröter (1897) based on the structure of the oogonial wall. Subsequently, several Pythium species were transferred to Nematosporangium (Sideris 1931; Yachevskij and Yachevskij 1931); however, the genus Nematosporangium was considered an illegitimate taxon because the type species of Pythium, P. monospermum, defined by Pringsheim, was included in Nematosporangium. Therefore, all members are included in the genus Pythium in the current taxonomy (van der Plaäts-Niterink 1981); however, it is clear that Pythium is composed of two morphological groups clearly differentiated from each other by filamentous or globose sporangia, thus the infrageneric classification of *Pythium* should be examined in detail.

Taxonomy of Pythium species is generally based on morphological characteristics, such as the shape and size of sporangia and oogonia, the extent of oospore in the oogonium (plerotic or aplerotic), the number of antheridia per oogonium, and the position of the antheridium in relation to the oogonium (Waterhouse 1963; van der Plaäts-Niterink 1981; Dick 1990). However, members of Pythium are considered a very difficult group for species delimitation and identification because these characteristics are often very similar among different species and sometimes not formed on an agar medium. Therefore, recently, molecular methods have been used for species identification to supplement the morphological taxonomy by many researchers who have mainly analyzed the ribosomal DNA (rDNA) region. The results revealed that sequences of the rDNA internal transcribed spacer (ITS) region were very different among Pythium species (Wang and White 1997; Matsumoto et al. 1999; Lévesque and de Cock 2004; Kageyama et al. 2005). Thus, sequence data of this region had been frequently used to identify and classify Pythium species.

Molecular data have also been used for phylogenetic analyses of Pythium and related genera based on the rDNA large subunit (LSU) D1/D2 and ITS,  $\beta$ -tubulin, or mitochondrial cytochrome oxidase II (coxII) gene (Briard et al. 1995; Matsumoto et al. 1999; Panabieres et al. 1997; Martin 2000; Petersen and Rosendahl 2000; Dick 2001b; Voglmayr 2003; Villa et al. 2006; Belbahri et al. 2008). Many reports have shown that *Pythium* appears to be a nonmonophyletic group that includes several monophyletic groups, and the species are clustered according to sporangial morphology. One monophyletic group is characterized by filamentous inflated or noninflated sporangia and another group by globose sporangia. These results reveal that the genus consists of several groups supported by both morphology and phylogeny. Thus, this suggests the necessity of taxonomic revision of the genus.

The objective of this study was to clarify the taxonomy of the genus *Pythium* by morphological and phylogenetic examinations based on *Pythium* isolates (Table 1). For this purpose, *Pythium* species were isolated from various soil samples collected from cultivated and uncultivated fields in Japan and were analyzed phylogenetically based on the sequences of two different genes, LSU rDNA D1/D2 region and *cox*II. To evaluate the phylogenetic relationship between *Pythium* and other genera and phylogenetic relationships among *Pythium* species, comprehensive sequence data from the GenBank database were used for analyses. Based on the relationships between morphology and phylogeny, taxonomy of the genus *Pythium* is revised, and a new taxonomic revision is proposed.

# Table 1 Species and GenBank accession number of the Pythium isolates used in this study

| Isolate no. |                             | Isolate origin      |                        | Species <sup>a</sup> GenBank accession No  |           | ccession No. |             |
|-------------|-----------------------------|---------------------|------------------------|--------------------------------------------|-----------|--------------|-------------|
| Origin      | International               | Substrate           | Locality               |                                            | ITS       | D1/D2        | coxII       |
|             |                             |                     |                        | Pythium                                    |           |              |             |
| UZ352       | MAFF 241099                 | Soil (uncultivated) | Hokkaido, Japan        | P. acanthicum                              | AB468763  | AB468698     | AB468889    |
| UZ364       | MAFF 241100                 | Soil (uncultivated) | Hokkaido, Japan        | P. acanthicum                              | AB468764  | AB468699     |             |
| UZ051       | MAFF 241101                 | Soil (cultivated)   | Nganano, Japan         | P. aphanidermatum                          | AB468765  | AB468700     | AB468890    |
| UZ216       | MAFF 240154,<br>NBRC 103117 | Soil (cultivated)   | Gunma, Japan           | P. aquatile                                | AB359909  | AB468701     | AB468891    |
| UZ264       | MAFF 240156,<br>NBRC 103118 | Soil (cultivated)   | Okinawa, Japan         | P. catenulatum                             | AB468766  | AB468702     | AB468892    |
| UZ159       | MAFF 241102                 | Soil (cultivated)   | Kyoto, Japan           | P. dissotocum                              | AB468767  | AB468703     | AB468893    |
| UZ357       | MAFF 241115                 | Soil (uncultivated) | Hokkaido, Japan        | P. torulosum                               | AB468780  | AB468718     | AB468905    |
| OPU1445     | MAFF 241116                 | Orchard grass       | Hokkaido, Japan        | P. vanterpoolii                            | AB468783  | AB468721     | AB468908    |
| OPU1446     |                             | Wheat               | Hokkaido, Japan        | P. volutum                                 | AB468786  | AB468724     | AB468911    |
| OPU797      | MAFF 241119                 | Soil (uncultivated) | Okinawa, Japan         | Pythium sp.40                              | AB468768  | AB468704     |             |
| OPU1448     | MAFF 241120                 | Orchard grass       | Hokkaido, Japan        | Pythium sp.41                              | AB468818  | AB468756     | AB468937    |
| OPU1449     | MAFF 241121                 | Orchard grass       | Hokkaido, Japan        | Pythium sp.42                              | AB468819  | AB468757     | AB468938    |
| UZ156       | MAFF 241122                 | Soil (cultivated)   | Nganano, Japan         | Pythium sp.2                               | AB468787  | AB468725     | AB468912    |
| UZ190       | MAFF 241125                 | Soil (cultivated)   | Hokkaido, Japan        | Pythium sp.3                               | AB468790  | AB468728     | AB468915    |
| UZ379       | MAFF 241142                 | Soil (uncultivated) | Fukushima, Japan       | Pythium sp.16                              | AB468807  | AB468745     | AB468929    |
| UZ419       | MAFF 241147                 | Soil (uncultivated) | Fukuoka, Japan         | Pythium sp 23                              | AB468812  | AB468750     | AB468933    |
| UZ655       | MAFE 241151                 | Soil (uncultivated) | Miyagi Japan           | Pythium sp 28                              | AB468816  | AB468754     | AB468935    |
| ZSE0011     |                             | Soil (uncultivated) | Nganano Janan          | Pythium sp 43                              | AB468820  | AB468758     | AB468939    |
| ZSF0093     |                             | Soil (uncultivated) | Nganano, Japan         | Pythium sp.47                              | AB468824  | AB468762     | 1112 100939 |
| 201 0095    |                             | Son (uncultivated)  | rigunano, supun        | Ovatisporangium                            | 110100021 | 110100702    |             |
| UZ215       | MAFF 241117                 | Soil (cultivated)   | Gunma, Japan           | Q, vexans = $P$ , vexans                   | AB468784  | AB468722     | AB468909    |
| UZ309       | MAFF 241118                 | Soil (uncultivated) | Kvoto, Japan           | Q, vexans = $P$ , vexans                   | AB468785  | AB468723     | AB468910    |
| UZ230       | MAFF 241127                 | Soil (uncultivated) | Nagano, Japan          | Ovatisporangium sp.1                       | AB468792  | AB468730     | AB468917    |
| UZ248       | MAFF 241128                 | Soil (uncultivated) | Okinawa Janan          | Ovatisporangium sp.2                       | AB468793  | AB468731     | AB468918    |
| UZ287       | MAFE 241138                 | Soil (cultivated)   | Okinawa Japan          | Ovatisporangium sp.2                       | AB468803  | AB468741     | AB468925    |
| 117392      | MAFE 241144                 | Soil (uncultivated) | Fukuoka Japan          | Ovatisporangium sp.3                       | AB468809  | AB468747     | 1112100923  |
| UZ612       | MAFE 241149                 | Soil (uncultivated) | Nagano Japan           | Ovatisporangium sp.5                       | AB468814  | AB468752     |             |
| 02012       | WAT 241147                  | Son (uncultivated)  | Nagano, Japan          | Globisporangium                            | AD400014  | AB400752     |             |
| UZ067       | MAFF 241103                 | Soil (cultivated)   | Nagano, Japan          | G. irregulare = P. irregulare              | AB468769  | AB468705     |             |
| UZ370       | MAFF 241104                 | Soil (cultivated)   | Hokkaido, Japan        | G. irregulare = $P$ . irregulare           | AB468770  | AB468706     | AB468894    |
| OPU1450     | MAFF 241105                 | Wheat               | Hokkaido, Japan        | G. iwayamae = P. iwayamae                  | AB299388  | AB468707     | AB468895    |
| UZ233       | MAFF 240155,<br>NBRC 103881 | Soil (uncultivated) | Nagano, Japan          | G. macrosporum =<br>P. macrosporum         | AB359910  | AB468708     | AB468896    |
| UZ041       | MAFF 241106                 | Soil (cultivated)   | Nagano, Japan          | G. nunn = P. nunn                          | AB468771  | AB468709     | AB468897    |
| OPU1443     | MAFF 241107                 | Orchard grass       | Hokkaido, Japan        | G. okanoganense =<br>P. okanoganense       | AB468817  | AB468755     | AB468936    |
| OPU1438     | MAFF 241108                 | Wheat               | Hokkaido, Japan        | G. paddicum = P. paddicum                  | AB468772  | AB468710     | AB468898    |
| OPU466      | CBS 157.64                  | Soil                | Adelaide,<br>Australia | G. paroecandrum =<br>P. paroecandrum       | AY598644  | AY598644     |             |
| UZ354       | MAFF 241109                 | Soil (uncultivated) | Hokkaido, Japan        | G. rostratifingens =<br>P. rostratifingens | AB468773  | AB468711     | AB468899    |
| OPU1440     | MAFF 241110                 | Wheat               | Hokkaido, Japan        | G. rostratifingens =<br>P. rostratifingens | AB468774  | AB468712     | AB468900    |
| OPU1441     | MAFF 241111                 | Wheat               | Hokkaido, Japan        | G. rostratum = P. rostratum                | AB468775  | AB468713     | AB468901    |
| UZ150       | MAFF 240027                 | Soil (cultivated)   | Gunma, Japan           | G. spinosum = P. spinosum                  | AB468776  | AB468714     | AB468902    |
| UZ405       | MAFF 241112                 | Soil (cultivated)   | Fukuoka, Japan         | G. spinosum = P. spinosum                  | AB468777  | AB468715     |             |

### Table 1 continued

| Isolate no. |               | Isolate origin       |                     | Species <sup>a</sup>                 | GenBank a | GenBank accession No. |          |  |
|-------------|---------------|----------------------|---------------------|--------------------------------------|-----------|-----------------------|----------|--|
| Origin      | International | Substrate            | Locality            |                                      | ITS       | D1/D2                 | coxII    |  |
| UZ174       | MAFF 241113   | Soil (cultivated)    | Kagoshima,<br>Japan | $G. \ splendens = P. \ splendens$    | AB468778  | AB468716              | AB468903 |  |
| UZ307       | MAFF 241114   | Soil (uncultivated)  | Kyoto, Japan        | G. sylvaticum = P. sylvaticum        | AB468779  | AB468717              | AB468904 |  |
|             |               |                      |                     | G. ultimum = P. ultimum              |           |                       |          |  |
| OPU465      | CBS 219.65    | Chenopodium<br>album | USA                 | Var. sporangiiferum                  | AY598656  | AY598656              |          |  |
| UZ056       | MAFF 240024   | Soil (cultivated)    | Nagano, Japan       | Var. ultimum                         | AB468781  | AB468719              | AB468906 |  |
| Py-2        | MAFF 240295   | Lettuce              | Hyogo, Japan        | G. uncinulatum =<br>P. uncinulatum   | AB468782  | AB468720              | AB468907 |  |
| UZ164       | MAFF 241123   | Soil (cultivated)    | Fukushima, Japan    | Globisporangium sp.1                 | AB468788  | AB468726              | AB468913 |  |
| UZ182       | MAFF 241124   | Soil (cultivated)    | Kumamoto, Japan     | Globisporangium sp.2                 | AB468789  | AB468727              | AB468914 |  |
| UZ213       | MAFF 241126   | Soil (uncultivated)  | Gunma, Japan        | Globisporangium sp.3                 | AB468791  | AB468729              | AB468916 |  |
| UZ318       | MAFF 241141   | Soil (uncultivated)  | Hokkaido, Japan     | Globisporangium sp.3                 | AB468806  | AB468744              | AB468928 |  |
| UZ400       | MAFF 241145   | Soil (uncultivated)  | Fukuoka, Japan      | Globisporangium sp.3                 | AB468810  | AB468748              | AB468931 |  |
| UZ249       | MAFF 241129   | Soil (uncultivated)  | Okinawa, Japan      | Globisporangium sp.4                 | AB468794  | AB468732              | AB468919 |  |
| UZ252       | MAFF 241130   | Soil (uncultivated)  | Okinawa, Japan      | Globisporangium sp.5                 | AB468795  | AB468733              |          |  |
| UZ253       | MAFF 241131   | Soil (uncultivated)  | Okinawa, Japan      | Globisporangium sp.6                 | AB468796  | AB468734              | AB468920 |  |
| UZ260       | MAFF 241132   | Soil (uncultivated)  | Okinawa, Japan      | Globisporangium sp.7                 | AB468797  | AB468735              | AB468921 |  |
| UZ263       | MAFF 241133   | Soil (cultivated)    | Okinawa, Japan      | Globisporangium sp.8                 | AB468798  | AB468736              |          |  |
| UZ284       | MAFF 241136   | Soil (cultivated)    | Okinawa, Japan      | Globisporangium sp.8                 | AB468801  | AB468739              | AB468924 |  |
| UZ275       | MAFF 241134   | Soil (uncultivated)  | Okinawa, Japan      | Globisporangium sp.9                 | AB468799  | AB468737              | AB468922 |  |
| UZ277       | MAFF 241135   | Soil (cultivated)    | Okinawa, Japan      | Globisporangium sp.10                | AB468800  | AB468738              | AB468923 |  |
| UZ285       | MAFF 241137   | Soil (cultivated)    | Okinawa, Japan      | Globisporangium sp.11                | AB468802  | AB468740              |          |  |
| UZ290       | MAFF 241139   | Soil (cultivated)    | Okinawa, Japan      | Globisporangium sp.12                | AB468804  | AB468742              | AB468926 |  |
| UZ304       | MAFF 241140   | Soil (uncultivated)  | Ibaraki, Japan      | Globisporangium sp.13                | AB468805  | AB468743              | AB468927 |  |
| UZ382       | MAFF 241143   | Soil (uncultivated)  | Nagano, Japan       | Globisporangium sp.14                | AB468808  | AB468746              | AB468930 |  |
| UZ416       | MAFF 241146   | Soil (uncultivated)  | Fukuoka, Japan      | Globisporangium sp.15                | AB468811  | AB468749              | AB468932 |  |
| UZ594       | MAFF 241148   | Soil (uncultivated)  | Aichi, Japan        | Globisporangium sp.16                | AB468813  | AB468751              |          |  |
| UZ636       | MAFF 241150   | Soil (uncultivated)  | Miyagi, Japan       | Globisporangium sp.17                | AB468815  | AB468753              | AB468934 |  |
| ZSF0030     |               | Soil (uncultivated)  | Nagano, Japan       | Globisporangium sp.18                | AB468821  | AB468759              | AB468940 |  |
| ZSF0069     |               | Soil (uncultivated)  | Nagano, Japan       | Globisporangium sp.19                | AB468823  | AB468761              | AB468942 |  |
|             |               |                      |                     | Elongisporangium                     |           |                       |          |  |
| ZSF0056     | NBRC 103814   | Soil (uncultivated)  | Nagano, Japan       | Elongisporangium sp.1                | AB468822  | AB468760              | AB468941 |  |
|             |               |                      |                     | Pilasporangium                       |           |                       |          |  |
| UZ300       | MAFF 241059   | Soil (uncultivated)  | Wakayama, Japan     | Pi. apinafurcum = Py.<br>apinafurcum | AB458660  | AB458651              | AB458820 |  |
| UZ301       | MAFF 241060   | Soil (uncultivated)  | Wakayama, Japan     | Pi. apinafurcum = Py.<br>apinafurcum | AB458657  | AB458652              | AB458818 |  |

<sup>a</sup> Numbers following unidentified isolates indicate morphological groups

### Materials and methods

Isolation and morphological observation

*Pythium* species were isolated from 79 soil samples collected in 18 prefectures of Japan. Among these samples, 40 were from cultivated fields and 39 from uncultivated fields, such as forests, marshes, naturally grown weeds, and

roadsides. The isolations from soil samples and morphological observations were performed by methods described previously (Uzuhashi et al. 2008, 2009).

DNA extraction, amplification, and sequencing

The 69 isolates of *Pythium* were chosen for molecular phylogenetic analyses based on their morphological

characteristics. Some of them were deposited in the Microbiological Genebank, National Institute of Agrobiological Sciences (MAFF), Japan, and the Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Japan, as shown in Table 1. DNA extractions from these isolates and amplification of the LSU D1/D2 region of the rDNA were prepared by a method described previously (Uzuhashi et al. 2008, 2009). The coxII gene was amplified with the primer pair of FM66 (5' TAGGATTTCAAGATCCTGC 3') and FM58 (5' CCACAAATTTCACTACATTGA 3') described by Martin (2000). Reaction mixtures contained 2.5  $\mu$ l of 10× Ex Tag buffer (20 mM Tris-HCl, pH 8.0; 100 mM KCl), 2.0 µl of 2.5 mM deoxyribonucleotide triphosphate (dNTP) mixture, 2.5 µl of 2 µM each primer, 0.125 µl of Tag polymerase (Takara Bio, Shiga, Japan), 1.0 µl of template DNA, and 14.5 µl sterile distilled water. Amplification was carried out in a polymerase chain reaction (PCR) System 9700 (Applied Biosystems, Tokyo, Japan) according to the following amplification program: an initial denaturation at 95°C for 5 min, followed by 40 cycles including denaturation at 94°C for 1 min, annealing at 52°C for 1 min, extension at 72°C for 1 min, and the final extension step at 72°C for 7 min. PCR products were purified with Wizard SV Gel and PCR Clean-Up System (Promega, Tokyo, Japan) following the manufacturer's instructions and then used for sequence analysis. All sequence reactions were performed as previously described (Uzuhashi et al. 2008). All sequence data has been deposited in the GenBank (Table 1).

### Molecular phylogenetic analyses

All isolates used for molecular phylogenetic analyses are listed in Table 1. In addition to the species isolated in this study, phylogenetically diverse Pythium species were chosen based on a previous study (Lévesque and de Cock 2004). Other organisms belonging to the Oomycetes were chosen mainly based on the results of a report by Riethmüller et al. (2002) and analyzed (Table 2). Sapromyces elongatus (Cornu) Thaxt. (Rhipidiales in the Rhipidiomycetidae) was chosen as the outgroup on the basis of the results of previous studies (Riethmüller et al. 1999; Petersen and Rosendahl 2000). All sequence data were aligned initially using ClustalX (Thompson et al. 1997) and then visually checked and refined with MacClade 4 (Maddison and Maddison 2000). The complete alignments were deposited in TreeBASE as SN4688 (D1/D2) and SN4689 (coxII). All neighbor-joining (NJ) analyses (Saitou and Nei 1987) were performed using PAUP\* 4.0b10 (Swofford 2002). The aligned data were firstly analyzed with Modeltest version 3.7 (Posada and Crandall 1998) using the Akaike information criterion (AIC; Akaike 1974) to find the most appropriated model of DNA substitution, which was then used to calculate the NJ tree. Support for internal tree nodes was obtained using bootstrap analysis of 100 replicates. All maximum likelihood (ML) analyses were performed using RAxML software version 2.2.3 (Stamatakis 2006). One hundred random sequence additions, as well as 100 bootstrap replicates, were computed with RAxML version 2.2.3 using the GTRMIX algorithm. All phylogenetic trees were visualized by TREEVIEW version 1.6.6 (Page 1996).

### **Results and discussion**

### Identification of isolates

The 554 isolates of Pythium were obtained from 79 soil samples. Among them, 314 isolates were obtained from cultivated fields, and the other 240 isolates were obtained from uncultivated fields. Based on the morphological characteristics observed, the 356 isolates were identified into 18 species. The other 198 isolates could not be identified either because an asexual or sexual stage was not observed or they had unique morphological characteristics differing from those of reported species despite forming several organs of both stages. Further taxonomic examination of these isolates, such as whether or not these isolates should be considered as new species, are necessary in the future. Most isolates from cultivated fields were identified, whereas more than half of the isolates obtained from uncultivated fields were not identified. Although the number of identified isolates was greater in cultivated fields than in uncultivated fields, the number of species identified was almost the same between the two types of fields. These results suggest that more diverse Pythium species occupied uncultivated fields than cultivated fields, and many Pythium isolates from uncultivated field could not be identified to species.

### Alignment

In phylogenetic analyses based on the D1/D2 region of LSU rDNA, 208 sequences were analyzed, which included 99 sequences from *Pythium* isolates (Table 2). The length of all sequences varied from 545 to 651 bp, and the total length after alignment was 692 bp. The log likelihood of the best ML tree recovered by RAxML was -15897.572501. The base frequencies were *A* 0.221360, *C* 0.177384, *G* 0.311829, and *T* 0.289427. In the *cox*II gene, 127 sequences were analyzed, which included 75 sequences from *Pythium* isolates (Table 2). The length of all sequences varied from 554 to 581 bp, and the total length after alignment was 581 bp. The log likelihood

| Taxon                  | Isolate no. | GenBank accessi | on no.   | Reference                       |  |
|------------------------|-------------|-----------------|----------|---------------------------------|--|
|                        |             | D1/D2           | CoxII    |                                 |  |
| Oomycetes              |             |                 |          |                                 |  |
| Albuginales            |             |                 |          |                                 |  |
| Albuginaceae           |             |                 |          |                                 |  |
| Genus Albugo           |             |                 |          |                                 |  |
| A. candida             | AR 156      | AY035539        |          | Riethmüller et al. (2002)       |  |
| A. evolvuli            | AR 377      | DQ007489        |          | Voglmayr and Riethmüller (2006) |  |
| A. occidentalis        |             |                 | AY286220 | Hudspeth et al. (2003)          |  |
| A. tragopogonis        |             |                 | AY286221 | Hudspeth et al. (2003)          |  |
| Peronosporales         |             |                 |          |                                 |  |
| Peronosporaceae        |             |                 |          |                                 |  |
| Genus Basidiophora     |             |                 |          |                                 |  |
| B. entospora           | HV 123      | AY035513        |          | Riethmüller et al. (2002)       |  |
| -                      | HV 123      |                 | DQ365699 | Göker et al. (2007)             |  |
| Genus Bremia           |             |                 |          |                                 |  |
| B. lactucae            | HV 704      | AY035507        |          | Riethmüller et al. (2002)       |  |
|                        | HV 759      |                 | DQ365701 | Göker et al. (2007)             |  |
| Genus Halophytophthora |             |                 |          |                                 |  |
| H. avicenniae          | CBS 188.85  | AY598668        |          | Lévesque and de Cock (2004)     |  |
| H. polymorphica        | CBS 680.84  | AY598669        |          | Lévesque and de Cock (2004)     |  |
| Genus Hyaloperonospora |             |                 |          |                                 |  |
| H. barbareae           | MG 13-6     | AY035499        |          | Riethmüller et al. (2002)       |  |
| H. brassicae           | MG 12-10    | AY035503        |          | Riethmüller et al. (2002)       |  |
| H. dentariae           | MG 5-8      | AY035505        |          | Riethmüller et al. (2002)       |  |
| H. erophilae           | MG 19-4     |                 | DQ365705 | Göker et al. (2007)             |  |
| H. niessliana          | MG 4-1      | AY035498        |          | Riethmüller et al. (2002)       |  |
| H. parasitica          | AR 154      | AY035501        |          | Riethmüller et al. (2002)       |  |
|                        | MG 5-8      |                 | DQ365708 | Göker et al. (2007)             |  |
| H. thlaspeos-arvensis  | MG 15-2     | AY035502        |          | Riethmüller et al. (2002)       |  |
| Genus Paraperonospora  |             |                 |          |                                 |  |
| P. leptosperma         | HV 383      | AY035515        |          | Riethmüller et al. (2002)       |  |
|                        | HV 383      |                 | DQ365712 | Göker et al. (2007)             |  |
| Genus Peronospora      |             |                 |          |                                 |  |
| P. aestivalis          | HV 167      | AY035482        |          | Riethmüller et al. (2002)       |  |
|                        | MG 18-4     |                 | DQ365714 | Göker et al. (2007)             |  |
| P. alsinearum          | HV 6a       | AY035472        |          | Riethmüller et al. (2002)       |  |
| P. aparines            | MG 4-5      | AY035484        |          | Riethmüller et al. (2002)       |  |
|                        | MG 4-5      |                 | DQ365717 | Göker et al. (2007)             |  |
| P. arvensis            | MG 15-10    | AY035491        |          | Riethmüller et al. (2002)       |  |
|                        | MG 15-9     |                 | DQ365719 | Göker et al. (2007)             |  |
| P. boni-henrici        | AR 167      | AY035475        |          | Riethmüller et al. (2002)       |  |
|                        | MG 7-4      |                 | DQ365720 | Göker et al. (2007)             |  |
| P. bulbocapni          |             | AF119599        |          | Riethmüller et al. (1999)       |  |
| P. calotheca           | HV 83       | AY035483        |          | Riethmüller et al. (2002)       |  |
|                        | MG 6-2      |                 | DQ365721 | Göker et al. (2007)             |  |
| P. conglomerata        | HV 27       | AY035489        |          | Riethmüller et al. (2002)       |  |
|                        | MG 18-11    |                 | DQ365723 | Göker et al. (2007)             |  |
| P. ficariae            |             | AF119600        |          | Riethmüller et al. (1999)       |  |

Table 2 GenBank accession numbers and references of taxa used in this study

### Table 2 continued

343

| Taxon                   | Isolate no. GenBank |          | on no.   | Reference                 |  |
|-------------------------|---------------------|----------|----------|---------------------------|--|
|                         |                     | D1/D2    | CoxII    |                           |  |
| P. hiemalis             | HV 5a               | AY035469 |          | Riethmüller et al. (2002) |  |
|                         | MG 4-4              |          | DQ365724 | Göker et al. (2007)       |  |
| P. lamii                | MG 14-1             | AY035494 |          | Riethmüller et al. (2002) |  |
|                         | MG 14-2             |          | DQ365725 | Göker et al. (2007)       |  |
| P. myosotidis           | MG 1-4              | AY035473 |          | Riethmüller et al. (2002) |  |
| P. potentillae-sterilis | MG 14-5             | AY035486 |          | Riethmüller et al. (2002) |  |
| P. pulveracea           | MG 9-5              | AY035470 |          | Riethmüller et al. (2002) |  |
| P. rumicis              | HV 300              | AY035476 |          | Riethmüller et al. (2002) |  |
| P. sanguisobae          | MG 12-6             | AY035487 |          | Riethmüller et al. (2002) |  |
|                         | MG 12-2             |          | DQ365729 | Göker et al. (2007)       |  |
| P. silvestris           | AR 194              | AY035490 |          | Riethmüller et al. (2002) |  |
| P. sparsa               | MG 14-9             | AY035488 |          | Riethmüller et al. (2002) |  |
| P. trifolii-alpestris   | MG 9-10             | AY035481 |          | Riethmüller et al. (2002) |  |
| P. trifolii-hybridi     | MG 13-8             | AY035480 |          | Riethmüller et al. (2002) |  |
| P. trifolii-minoris     | MG 11-9             | AY035479 |          | Riethmüller et al. (2002) |  |
| P. trivialis            | MG 6-4              | AY035471 |          | Riethmüller et al. (2002) |  |
|                         | MG 6-4              |          | DQ365733 | Göker et al. (2007)       |  |
| P. variabilis           | MG 8-6              | AY035477 |          | Riethmüller et al. (2002) |  |
|                         | MG 8-6              |          | DQ365734 | Göker et al. (2007)       |  |
| Genus Phytophthora      |                     |          |          |                           |  |
| P. boehmeriae           | PD_00181            | EU080166 |          | Blair et al. (2008)       |  |
|                         | 325                 |          | AY129177 | Martin and Tooley (2003)  |  |
| P. cactorum             | PD_00929            | EU080282 |          | Blair et al. (2008)       |  |
|                         | MG 34-2             |          | DQ365737 | Göker et al. (2007)       |  |
| P. capsici              | PD_00009            | EU080856 |          | Blair et al. (2008)       |  |
|                         | AR 244              |          | DQ365739 | Göker et al. (2007)       |  |
| P. cinnamomi            | PD_00394            | EU080457 |          | Blair et al. (2008)       |  |
|                         | Cn-2                |          | AY129182 | Martin and Tooley (2003)  |  |
| P. citricola            | SB2084              |          | AY129184 | Martin and Tooley (2003)  |  |
| P. citrophthora         | PD_00041            | EU080542 |          | Blair et al. (2008)       |  |
| P. clandestina          | PD_00134            | EU079871 |          | Blair et al. (2008)       |  |
| P. erythroseptica       | PD_00014            | EU079832 |          | Blair et al. (2008)       |  |
|                         | ATCC 36302          |          | AY129191 | Martin and Tooley (2003)  |  |
| P. europaea             | PD_00082            | EU079486 |          | Blair et al. (2008)       |  |
| P. gonapodyides         | PD_00040            | EU080535 |          | Blair et al. (2008)       |  |
|                         | 393                 |          | AY129197 | Martin and Tooley (2003)  |  |
| P. heveae               | PD_00073            | EU080800 |          | Blair et al. (2008)       |  |
|                         | MG 25-8             |          | DQ365742 | Göker et al. (2007)       |  |
| P. ilicis               | PD_00133            | EU079864 |          | Blair et al. (2008)       |  |
|                         | 343                 |          | AY129202 | Martin and Tooley (2003)  |  |
| P. insolita             | PD_00175            | EU080180 |          | Blair et al. (2008)       |  |
|                         | MG 33-8             |          | DQ365744 | Göker et al. (2007)       |  |
| P. multivesiculata      | PD_00001            | EU080070 |          | Blair et al. (2008)       |  |
|                         | MG 33-6             |          | DQ365748 | Göker et al. (2007)       |  |
| P. nicotianae           | PD_01305            | EU080889 |          | Blair et al. (2008)       |  |
|                         | Pn-17               |          | AY129215 | Martin and Tooley (2003)  |  |
| P. palmivora            | 329                 |          | AY129217 | Martin and Tooley (2003)  |  |

### Table 2 continued

| Taxon                    | Isolate no. | GenBank accession no. |            | Reference                     |  |
|--------------------------|-------------|-----------------------|------------|-------------------------------|--|
|                          |             | D1/D2                 | CoxII      |                               |  |
| P. quercina              | PD_00035    | EU080489              |            | Blair et al. (2008)           |  |
|                          | MG 34-3     |                       | DQ365751   | Göker et al. (2007)           |  |
| P. ramorum               | PD_00058    | EU080688              |            | Blair et al. (2008)           |  |
|                          | CBS 101553  |                       | EU427471   | Martin (2008)                 |  |
| P. syringae              | PD_00044    | EU080562              |            | Blair et al. (2008)           |  |
|                          | IMI 296829  |                       | AY129224   | Martin and Tooley (2003)      |  |
| Genus Plasmopara         |             |                       |            |                               |  |
| P. baudysii              | HV 571      | AY035517              |            | Riethmüller et al. (2002)     |  |
| P. densa                 | MG 6-1      | AY035525              |            | Riethmüller et al. (2002)     |  |
|                          | MG 1-6      |                       | DQ365754   | Göker et al. (2007)           |  |
| P. geranii               | HV 6.4.P.P  | AY035520              |            | Riethmüller et al. (2002)     |  |
| P. halstedii             | AR 151      | AY035523              |            | Riethmüller et al. (2002)     |  |
| P. megasperma            | HV B.M.4.4  | AY035516              |            | Riethmüller et al. (2002)     |  |
|                          | MG 39-4     |                       | DQ365755   | Göker et al. (2007)           |  |
| P. obducens              | HV 5.4.P.O  | AY035522              |            | Riethmüller et al. (2002)     |  |
|                          | HV 306      |                       | DQ365757   | Göker et al. (2007)           |  |
| P. pimpinellae           | HV 634      | AY035519              |            | Riethmüller et al. (2002)     |  |
| P. pusilla               | MG 8-10     | AY035521              |            | Riethmüller et al. (2002)     |  |
|                          | MG 8-10     |                       | DQ365759   | Göker et al. (2007)           |  |
| P. sii                   | HV 550      | AY035518              |            | Riethmüller et al. (2002)     |  |
| P. viticola              | AR 150      | AY035524              |            | Riethmüller et al. (2002)     |  |
|                          | MG 11-5     |                       | DQ365760   | Göker et al. (2007)           |  |
| Genus Plasmoverna        |             |                       |            |                               |  |
| P. isopyri-thalictroidis | HV 266      | AY035526              |            | Riethmüller et al. (2002)     |  |
| P. pygmaea               |             | AF119605              |            | Riethmüller et al. (1999)     |  |
| Genus Pseudoperonospora  |             |                       |            |                               |  |
| P. cubensis              | HV 221 h    | AY035496              |            | Riethmüller et al. (2002)     |  |
| P. humuli                | HV 129      | AY035497              |            | Riethmüller et al. (2002)     |  |
|                          | HV 129      |                       | DQ365763   | Göker et al. (2007)           |  |
| P. urticae               | HV 713      |                       | DQ365764   | Göker et al. (2007)           |  |
| Genus Viennotia          |             |                       |            |                               |  |
| V. oplismeni             | HV isol. 11 | AY035527              |            | Riethmüller et al. (2002)     |  |
| Pythiales                |             |                       |            |                               |  |
| Pythiaceae               |             |                       |            |                               |  |
| Genus Lagenidium         |             |                       |            |                               |  |
| L. callinectes           | ATCC 24973  | AB285217              |            | -                             |  |
|                          | ATCC 200337 |                       | AF290308   | Cooke et al. (2000)           |  |
| L. chthamalophilum       |             | AF235946              |            | Petersen and Rosendahl (2000) |  |
| L. giganteum             | ATCC 36492  |                       | AF086697   | Hudspeth et al. (2000)        |  |
| L. myophilum             | ATCC 66280  | AB285220              | 1 2000010  | -                             |  |
| L. humanum               | ATCC 76726  | 10000010              | AF290310   | Cooke et al. $(2000)$         |  |
| L. thermophilum          | ATCC 200318 | AB285219              | 1 200000 ( | -                             |  |
| Come D dl                | ATCC 200318 |                       | AF290304   | Cooke et al. (2000)           |  |
| Genus Pythium            | CD0 540.00  | 137500720             |            |                               |  |
| P. acrogynum             | CBS 549.88  | A Y 598638            |            | Levesque and de Cock (2004)   |  |
| P. adhaerens             | CBS 520.74  | A Y 598619            |            | Levesque and de Cock (2004)   |  |
| P. anandrum              | CBS 285.31  | AY 598650             |            | Levesque and de Cock $(2004)$ |  |

### Table 2 continued

| Taxon              | Isolate no. | GenBank accession no. |          | Reference                   |  |
|--------------------|-------------|-----------------------|----------|-----------------------------|--|
|                    |             | D1/D2                 | CoxII    |                             |  |
| P. angustatum      | CBS 522.74  | AY598623              |          | Lévesque and de Cock (2004) |  |
| P. apleroticum     | CBS 772.81  | AY598631              |          | Lévesque and de Cock (2004) |  |
| P. arrhenomanes    | CBS 324.62  | AY598628              |          | Lévesque and de Cock (2004) |  |
|                    | 1993-39     |                       | AF196586 | _                           |  |
| P. boreale         | CBS 551.88  | AY598662              |          | Lévesque and de Cock (2004) |  |
|                    | CBS 551.88  |                       | EF408876 | _                           |  |
| P. capillosum      | CBS 222.94  | AY598635              |          | Lévesque and de Cock (2004) |  |
| P. caudatum        | ATCC 58383  |                       | AF290309 | Cooke et al. (2000)         |  |
| P. conidiophorum   | CBS 223.88  | AY598629              |          | Lévesque and de Cock (2004) |  |
| P. cucurbitacearum | CBS 748.96  | AY598667              |          | Lévesque and de Cock (2004) |  |
| P. cylindrosporum  | CBS 218.94  | AY598643              |          | Lévesque and de Cock (2004) |  |
| P. deliense        | 1989-19     |                       | AF196589 | _                           |  |
| P. dimorphum       | CBS 406.72  | AY598651              |          | Lévesque and de Cock (2004) |  |
| P. echinulatum     | CBS 281.64  | AY598639              |          | Lévesque and de Cock (2004) |  |
| P. graminicola     | CBS 327.62  | AY598625              |          | Lévesque and de Cock (2004) |  |
|                    | ATCC 96234  |                       | AB160849 | _                           |  |
| P. helicandrum     | CBS 393.54  | AY598653              |          | Lévesque and de Cock (2004) |  |
| P. helicoides      | CBS 286.31  | AY598665              |          | Lévesque and de Cock (2004) |  |
|                    | CBS 167.68  |                       | AB257273 | Kageyama et al. (2007)      |  |
| P. heterothallicum | CBS 450.67  | AY598654              |          | Lévesque and de Cock (2004) |  |
|                    | ATCC 18198  |                       | AF196595 | _                           |  |
| P. inflatum        | CBS 168.68  | AY598626              |          | Lévesque and de Cock (2004) |  |
|                    | MAFF 305863 |                       | DQ071379 | Villa et al. (2006)         |  |
| P. insidiosum      | CBS 574.85  | AY598637              |          | Lévesque and de Cock (2004) |  |
|                    | ATCC 58643  |                       | AF196597 | _                           |  |
| P. intermedium     | CBS 266.38  | AY598647              |          | Lévesque and de Cock (2004) |  |
|                    | MAFF 305570 |                       | DQ071380 | Villa et al. (2006)         |  |
| P. mastophorum     | CBS 375.72  | AY598661              |          | Lévesque and de Cock (2004) |  |
| P. monospermum     | CBS 158.73  | AY598621              |          | Lévesque and de Cock (2004) |  |
|                    | AR 213      |                       | DQ365765 | Göker et al. (2007)         |  |
| P. multisporum     | CBS 470.50  | AY598641              |          | Lévesque and de Cock (2004) |  |
| P. myriotylum      | 1993-43     |                       | AF196608 | _                           |  |
| P. nodosum         | MAFF 305905 |                       | DQ071399 | Villa et al. (2006)         |  |
| P. oedochilum      | CBS 292.37  | AY598664              |          | Lévesque and de Cock (2004) |  |
|                    | CBS 252.70  |                       | AB108012 |                             |  |
| P. oligandrum      | CBS 382.34  | AY598618              |          | Lévesque and de Cock (2004) |  |
|                    | 81-10       |                       | AF196610 | _                           |  |
| P. ostracodes      | CBS 768.73  | AY598663              |          | Lévesque and de Cock (2004) |  |
|                    | CBS 768.73  |                       | AB108013 | Kageyama et al. (2007)      |  |
| P. paroecandrum    | CBS 157.64  |                       | DQ071391 | Villa et al. (2006)         |  |
| P. perplexum       | CBS 674.85  | AY598658              |          | Lévesque and de Cock (2004) |  |
| P. pleroticum      | CBS 776.81  | AY598642              |          | Lévesque and de Cock (2004) |  |
| P. polymastum      | CBS 881.70  | AY598660              |          | Lévesque and de Cock (2004) |  |
| P. prolatum        | CBS 845.68  | AY598652              |          | Lévesque and de Cock (2004) |  |
| P. sulcatum        | ATCC 24735  |                       | AF196620 | _                           |  |
| P. undulatum       | AR 55       | AF119603              |          | Riethmüller et al. (1999)   |  |
|                    | MG 33-2     |                       | DQ365766 | Göker et al. (2007)         |  |

### Table 2 continued

| Taxon                | Isolate no. | GenBank accession no. |          | Reference                 |  |
|----------------------|-------------|-----------------------|----------|---------------------------|--|
|                      |             | D1/D2                 | CoxII    |                           |  |
| Ripidiales           |             |                       |          |                           |  |
| Rhipidiaceae         |             |                       |          |                           |  |
| Genus Sapromyces     |             |                       |          |                           |  |
| S. elongatus         | AR 9        | AF119618              |          | Riethmüller et al. (2002) |  |
| Ŭ                    |             |                       | AF086700 | Hudspeth et al. (2000)    |  |
| Leptomitales         |             |                       |          |                           |  |
| Leptomitaceae        |             |                       |          |                           |  |
| Genus Apodachlya     |             |                       |          |                           |  |
| A. brachynema        | AR 93       | AF119590              |          | Riethmüller et al. (2002) |  |
| A. pyrifera          |             |                       | AF086695 | Hudspeth et al. (2000)    |  |
| Genus Leptomitus     |             |                       |          |                           |  |
| L. lacteus           | AR 80       | AF119597              |          | Riethmüller et al. (2002) |  |
|                      | ATCC 38076  |                       | AF086696 | Hudspeth et al. (2000)    |  |
| Saprolegniales       |             |                       |          |                           |  |
| Leptolegniaceae      |             |                       |          |                           |  |
| Genus Aphanomyces    |             |                       |          |                           |  |
| A. laevis            | AR 47       | AF119586              |          | Riethmüller et al. (2002) |  |
| A. stellatus         | AR 51       | AF119587              |          | Riethmüller et al. (2002) |  |
| Genus Leptolegnia    |             |                       |          |                           |  |
| L. caudata           |             | AF218176              |          | Leclerc et al. (2000)     |  |
| Genus Pachymetra     |             |                       |          |                           |  |
| P. chaunorhiza       | CBS 960.87  | AF119598              |          | Riethmüller et al. (2002) |  |
| Genus Plectospira    |             |                       |          |                           |  |
| P. myriandra         | CBS 523.87  | AF119606              |          | Riethmüller et al. (1999) |  |
| Saprolegniaceae      |             |                       |          |                           |  |
| Genus Achlya         |             |                       |          |                           |  |
| A. americana         | AR 26       | AF119574              |          | Riethmüller et al. (2002) |  |
| A. caroliniana       | AR 97       | AF119576              |          | Riethmüller et al. (2002) |  |
| A. colorata          | CBS 545.67  | AF119577              |          | Riethmüller et al. (2002) |  |
| A. dubia             | CBS 546.67  | AF119578              |          | Riethmüller et al. (2002) |  |
| A. klebsiana         | CBS 101.49  | AF119579              |          | Riethmüller et al. (2002) |  |
| A. papillosa         | CBS 101.52  | AF119580              |          | Riethmüller et al. (2002) |  |
| A. racemosa          | AR 48       | AF119581              |          | Riethmüller et al. (2002) |  |
| A. radiosa           | AR 2        | AF119582              |          | Riethmüller et al. (2002) |  |
| A. spinosa           | AR 95       | AF119583              |          | Riethmüller et al. (2002) |  |
| A. treleaseana       | CBS 575.67  | AF119584              |          | Riethmüller et al. (2002) |  |
| Genus Aplanes        |             |                       |          |                           |  |
| A. androgynus        |             | AF119588              |          | Riethmüller et al. (2002) |  |
| Genus Aplanopsis     |             |                       |          |                           |  |
| A. spinosa           | CBS 112.61  | AF119589              |          | Riethmüller et al. (2002) |  |
| Genus Brevilegnia    |             |                       |          |                           |  |
| B. bispora           | CBS 569.67  | AF119591              |          | Riethmüller et al. (2002) |  |
| B. megasperma        | AR 4        | AF119592              |          | Riethmüller et al. (2002) |  |
| Genus Calyptralegnia |             |                       |          |                           |  |
| C. achlyoides        | AR 5        | AF119593              |          | Riethmüller et al. (2002) |  |
| Genus Dictyuchus     |             |                       |          |                           |  |
| D. monosporus        | CBS 467.81  | AF119595              |          | Riethmüller et al. (2002) |  |

#### Table 2 continued

| Taxon               | Isolate no. | GenBank accession | on no.   | Reference                     |  |
|---------------------|-------------|-------------------|----------|-------------------------------|--|
|                     |             | D1/D2             | CoxII    |                               |  |
| D. sterilis         | ATCC 44890  |                   | AF086691 | Hudspeth et al. (2000)        |  |
| Genus Isoachlya     |             |                   |          |                               |  |
| I. toruloides       |             | AF235947          |          | Petersen and Rosendahl (2000) |  |
| Genus Protoachlya   |             |                   |          |                               |  |
| P. paradoxa         | ATCC 44892  | DQ393493          |          | Hulvey et al. (2007)          |  |
| P. Polyspora        | ATCC 28092  | DQ393492          |          | Hulvey et al. (2007)          |  |
| Genus Pythiopsis    |             |                   |          |                               |  |
| P. cymosa           |             | AF218172          |          | Leclerc et al. (2000)         |  |
|                     | ATCC 26880  |                   | AF086689 | Hudspeth et al. (2000)        |  |
| Genus Saprolegnia   |             |                   |          |                               |  |
| S. anisospora       | CBS 537.67  | AF119609          |          | Riethmüller et al. (2002)     |  |
| S. diclina          | AR 12       | AF119610          |          | Riethmüller et al. (2002)     |  |
| S. eccentrica       | CBS 551.67  | AF119611          |          | Riethmüller et al. (2002)     |  |
| S. ferax            | AR 16       | AF119612          |          | Riethmüller et al. (2002)     |  |
|                     | ATCC 36051  |                   | AF086690 | Hudspeth et al. (2000)        |  |
| S. hypogyna         | CBS 869.72  | AF119613          |          | Riethmüller et al. (2002)     |  |
| S. litoralis        | CBS 535.67  | AF119614          |          | Riethmüller et al. (2002)     |  |
| S. monilifera       | CBS 558.67  | AF119615          |          | Riethmüller et al. (2002)     |  |
| S. parasitica       | IFO 32780   |                   | DQ071421 | Villa et al. (2006)           |  |
| Genus Scoliolegnia  |             |                   |          |                               |  |
| S. asterophora      | AR 94       | AF119619          |          | Riethmüller et al. (2002)     |  |
| Genus Thraustotheca |             |                   |          |                               |  |
| T. clavata          | AR 10       | AF119620          |          | Riethmüller et al. (2002)     |  |

of the best ML tree recovered by RAxML was –13011.219625. The base frequencies were *A* 0.314994, *C* 0.111223, *G* 0.166925, and *T* 0.406857.

#### Phylogenetic position of Pythium

All phylogenetic trees constructed in this study based on two different regions, rDNA D1/D2 and *cox*II, and two different methods, ML and NJ, showed a basal division of Oomycetes into two lineages with strong or moderate support (Figs. 1, 2). One lineage was composed of the Albuginales, Peronosporales, and Pythiales, including the genus *Pythium*. Another was composed of the Leptomitales and Saprolegniales. The same phylogenetic relationship between two subclasses was reported by several previous investigations based on LSU rDNA (Petersen and Rosendahl 2000; Riethmüller et al. 2002), small subunit (SSU) rDNA (Dick 1999), and *cox*II (Hudspeth et al. 2000).

Within the lineage including *Pythium*, the genus *Pythium* was clearly differentiated from the other genera analyzed, but it appeared to be a nonmonophyletic group including several monophyletic groups. The genus includes very divergent members phylogenetically, which is clear

when compared with those of the other genera. The genus *Pythium* is placed in an intermediate position between *Lagenidium*, and *Phytophthora* or *Halophytophthora* in D1/D2 phylogenetic tree. Thus, it is suggested that the genus is an ancestor of *Phytophthora* or *Halophytophthora* (Fig. 1). A similar phylogenetic position of *Pythium* was not shown in the *cox*II analyses, but the phylogenetic position of *Pythium* in *cox*II trees was not resolved because most of the basal branches were not supported significantly (Fig. 2). In contrast to the relationships between genera of Pythiales, Peronosporales appeared to be a monophyletic group, with significant support in D1/D2 analyses (Fig. 1).

### Phylogeny of Pythium

Previous phylogenetic analysis based on most sequence data of *Pythium* (116 species) was reported by Lévesque and de Cock (2004). This study divided *Pythium* into 11 clades, A–K. Because at least one species was chosen from each clade and was analyzed with many isolates obtained from soils in this study, it was suggested that the most morphologically or phylogenetically divergent *Pythium* species were analyzed. Thus, it was expected that the

phylogeny of *Pythium* was more appropriately evaluated in this study than in previous studies. As a result, *Pythium* was divided into five well- or moderately supported clades (1–5) common to all phylogenetic trees, although tree topologies among clades were slightly different among trees. Each of the five clades corresponded to one clade or one group clustered of several clades of 11 clades (A–K) in a previous study (Lévesque and de Cock 2004). Detail relationships between the five clades in this study (1–5) and 11 clades in the previous study (A–K; Lévesque and de Cock 2004) are also discussed.

Clade 1 was composed of six species and five unidentified *Pythium* isolates in D1/D2 analyses. This clade was strongly supported by bootstrap values (BV) of 96% in ML and 98% in NJ analyses (Fig. 1). A single clade comparable with clade 1 was also detected in the *cox*II trees, and it was supported by 98% BV (ML) and 100% BV (NJ; Fig. 2). Considering the species included in this clade, it was shown that this clade was comparable with clade K of the previous study (Lévesque and de Cock 2004). According to the previous study, two species, *P. chamaehyphon* Sideris and *P. indigoferae* E. J. Butler, are also included in this clade.

Clade 2 was composed of only one species, P. apinafurcum Uzuhashi & Tojo, and was only distantly related to the other clades, sufficient to be an independent phylogenetic group. Among eight P. apinafurcum isolates obtained in this study, D1/D2 sequences of all isolates were identical, whereas coxII showed two sequence patterns among the isolates regardless of their origins. Therefore, two isolates with different coxII sequences were analyzed. As a result, a monophyletic group composed of only two isolates was detected, with significant support of 96% BV (ML) and 100% BV (NJ). As in the D1/D2 analyses, this clade was distantly related to the other clades of Pythium. The phylogenetic position of clade 2 had not been detected in any previous studies, including that of Lévesque and de Cock (2004). Therefore, P. apinafurcum was phylogenetically unique within Pythium.

Clade 3 consisted of 21 species and nine unidentified *Pythium* isolates in the D1/D2 analyses. This clade was supported by 93% BV (ML) and 99% BV (NJ), although one species of *Lagenidium*, *La. myophilum* Hatai & Lawhav., was also included in this clade because the D1/D2 sequence of this species (AB285220) was identical to that of *P. capillosum* B. Paul (AY598635). However, the other species of *Lagenidium* analyzed in this study, *La. chthamalophilum* T.W. Johnson, *La. callinectes* Couch, *La. thermophilum* K. Nakam., Miho Nakam., Hatai & Zafran, formed a well-supported clade, which was located in a distiant position from *La. myophilum*. Therefore, it is doubtful that the sequence data for *La. myophilum* are of a *Lagenidium* species. A single clade comparable with clade 3 was also detected in the *cox*II trees and supported by 86%

Fig. 1 Phylogenetic tree of *Pythium* and related genera belonging to the Peronosporomycetes based on rDNA LSU D1/D2 sequences. Branch lengths were estimated with RAxML under maximum likelihood. *Numbers* on branches represent bootstrap values (BV) greater than 50%. Maximum likelihood (ML) BV from 100 replicates conducted with RAxML (*left*) and neighbor-joining (NJ) BV from 100 replicates conducted with PAUP\* (*right*) are shown. *Numbers* following the species name indicate GenBank accession numbers

BV in the NJ analysis, but it was not supported in the ML tree. In the *cox*II analyses, three *Pythium* species, *P. deliense* Meurs, *P. myriotylum* Drechsler, and *P. sulcatum* R. G. Pratt & J. E. Mitch., were also included in this clade.

Clade 3 consisted of species classified into clades A, B, C, and D in the previous study (Lévesque and de Cock 2004). Each subclade equaling four clades (A–D) was also detected in D1/D2 phylogenetic trees in this study. Furthermore, these four clades (A-D) were also detected as a monophyletic group with significant support in the previous study, which is comparable with clade 3 (Lévesque and de Cock 2004). Therefore, there is little doubt that the members of clade 3 represent a monophyletic group. According to the previous study (Lévesque and de Cock 2004), P. amasculinum Y. N. Yu, P. aristosporum Vanterp., P. chondricola De Cock, P. coloratum Vaartaja, P. conidiophorum Jokl, P. diclinum Tokun., P. dissimile Vaartaja, P. flevoense Plaäts-Nit., P. folliculosum B. Paul, P. grandisporangium Fell & Master, P. hydnosporum (Mont.) J. Schröt., P. lutarium Ali-Shtayeh, P. marinum Sparrow, P. pachycaule Ali-Shtayeh, P. periilum Drechsler, P. periplocum Drechsler, P. plurisporium Abad, Shew, Grand & L. T. Lucas, P. porphyrae, P. pyrilobum Vaartaja, P. scleroteichum Drechsler, P. sulcatum R. G. Pratt & J. E. Mitch., P. tracheiphilum Matta, and P. zingiberis M. Takah. were also included in this clade.

Clade 4 consisted of 28 *Pythium* species and 22 unidentified *Pythium* spp. isolates in the D1/D2 analyses. The *Albugo* clade was also included in clade 4 in the ML tree. However, clade 4 was not closely related to *Albugo* because the phylogenetic position of *Albugo* was not resolved due to long branches. A single clade comparable with clade 4 was also detected in the *cox*II analyses, although significant support was not obtained. A BV greater than 50% was shown in the NJ tree (53%).

Clade 4 included species belonging to five clades (E, F, G, I, and J) of the previous study (Lévesque and de Cock 2004). A subclade identical to the five clades (clade E, F, G, I, and J) was detected in clade 4, with strong to moderate support in the D1/D2 trees. One exception was shown in clade I. However, most subclades identical to the five clades were not detected in *cox*II analyses. Furthermore, members of clade 4 were not detected as a monophyletic group in the previous study (Lévesque and de Cock 2004), although all members were closely related. As the tree topology within clade 4



largely differed among the trees constructed in this and the previous study, the relationships among members of the clade were not resolved. Considering the low support for this clade and unclear relationships among isolates in this clade, it is unclear whether members of clade 4 form a monophyletic group. Further phylogenetic analyses, including more isolates, are needed to resolve the phylogeny of the clade and relationships among clades. First, the isolation of various isolates, including new species, is necessary. According to the previous study (Lévesque and de Cock 2004), P. acanthophoron Sideris, P. buismaniae Plaäts-Nit., P. debaryanum R. Hesse, P. erinaceum J. A. Robertson, P. hypogynum Middleton, P. kunmingense Y. N. Yu, P. mamillatum Meurs, P. marsipium Drechsler, P. middletonii Sparrow, P. minor Ali-Shtayeh, P. nagaii S. Ito & Tokun., P. orthogonon Ahrens, P. radiosum B. Paul, and P. violae Chesters & Hickman were also included in this clade.

Clade 5 consisted of five species and one *Pythium* sp. isolate in the D1/D2 analyses. A single clade comparable with clade 5 was also detected in the *cox*II phylogenetic trees, although only two isolates were analyzed. This clade was supported by high BV greater than 98% in all of phylogenetic trees. This clade was comparable with clade H in the previous study (Lévesque and de Cock 2004). As in the previous study (Lévesque and de Cock 2004), clade 5 was closely related to clade 4 and clustered with clade as monophyletic group in the D1/D2 analyses.

Relationships between phylogeny and morphology in *Pythium* 

Principal relationships between molecular phylogeny and morphological relationships within *Pythium* are shown in Fig. 3. This figure was developed from the phylogeny based on the D1/D2 ML tree and morphological characteristics. The shape of sporangium, formation of papilla, proliferation and zoospores, structure of oogonium, extent of oospores within the oogonium, and the number of antheridia per oogonium are shown. In addition to all isolates analyzed here, the morphological characteristics of other species in each clade suggested by results of the previous study (Lévesque and de Cock 2004) were also considered in the examination.

## Clade 1

The isolates of clade 1 formed sporangia of various shapes, such as (ob-)ovoid, (sub-)globose, lemon-shaped, or clavate. However, ovoid was the most common shape among the isolates and was frequently formed in each isolate. Sporangia with apical or lateral papilla and/or one to three or more germ tubes were observed in most species in this clade (Fig. 4a–f). Zoospores were formed in all isolates, Fig. 2 Phylogenetic tree of *Pythium* and related genera belonging to the Peronosporomycetes based on partial cytochrome oxidase II gene sequences. Branch lengths were estimated with RAxML under maximum likelihood (ML). *Numbers* on the branches represent bootstrap values (BV) greater than 50%. ML BV from 100 replicates conducted with RAxML (*left*) and neighbor-joining (NJ) BV from 100 replicates conducted with PAUP\* (*right*) are shown. *Numbers* following the species name indicate GenBank accession numbers

and internal proliferations were also observed in most species (Fig. 4g-i).

In the sexual stage, the surface of oogonia was smooth in all isolates. One exception is known in P. carbonicum B. Paul, which is shown to be included in clade K corresponding to clade 1 (de Cock et al. 2008). This species formed both smooth and ornamented oogonia with small projections (Paul 2003). Although oogonia and oospores were generally colorless in most species in this clade, yellowish oogonia or oospores were observed in two unidentified isolates, UZ287, UZ392, and two isolates of P. vexans de Bary and were known in P. helicoides Drechsler (van der Plaäts-Niterink 1981). Antheridia were monoclinous or diclinous and were mainly divided into two types in terms of both their shape and attachment to the oogonium. One type of antheridia was bell-shaped and had broad contact with the oogonium (Fig. 4j). Another was small and had apical contact with the oogonium (Fig. 4k). One exception was observed in the UZ230 isolate, in which an antheridium was absent, or many antheridia were produced per oogonium, showing undefined shapes or encircling an oogonium. Oospores were aplerotic or plerotic, and both types were observed among or within an isolate. Because morphological characteristics of the sexual stage largely varied not only among isolates but also within single isolates, this clade was characterized by the ovoid sporangia with or without papillae and the frequent formation of zoospores.

One remarkable exception of the morphological characteristics in clade 1 was known in *P. indigoferae*. Although this species was included in clade K by a previous study (Lévesque and de Cock 2004), it was known to form filamentous inflated sporangia (van der Plaäts-Niterink 1981). This morphology, which is inconsistent with the characteristics of this clade, was also pointed out in a previous study (Lévesque and de Cock 2004). However, the previous study concluded that further examination for the species was impossible because the strain of the species (CBS 261.30) no longer forms sporangia. Therefore, the inconsistent morphological characteristics of the species could not be resolved here.

### Clade 2

Clade 2 comprises only one species, *P. apinafurcum*. Thus, the morphological characteristics of the clade are identical



0.1substitutions/site

to those of the species. This species was characterized by complexly branched secondary hyphae (Fig. 5b) and oogonium, within which two oospores were frequently observed (Fig. 5f). The other morphological characteristics were sickle-shaped appressoria, globose nonproliferationg sporangia, smooth oogonia, and plerotic or aplerotic oospores (Fig. 5a, c–e). Zoospores were rarely observed.

### Clade 3

Most species in clade 3 formed one characteristic, defined as filamentous sporangia, although various shapes were observed; that is, sporangia that did not differ from vegetative hyphae (noninflated), consisting of a lobate or toruloid inflated element, or catenulate globose elements, were observed among isolates (Fig. 6a-f). A few exceptions were shown in OPU797 and ZSF0093 unidentified isolates in this study and were known in P. tracheiphilum, P. salpingophorum Drechsler and P. conidiophurum (van der Plaäts-Niterink 1981). The OPU797 isolate formed unique ovoid- or pyriform-shaped sporangia. The tip of the sporangia intensively elongated and often reached 150 µm or more (Fig. 6g). This feature was rarely observed in other Pythium species. This isolate also sometimes formed sporangia-like filamentous shapes on the same agar medium. The ZSF0093 isolate formed subglobose sporangia, which were often contiguous as a chain (Fig. 6f). Unlike the catenulate sporangia shown in several species within the clade, the shapes were generally ellipsoid rather than globose. A similar shape of sporangia was also known in P. tracheiphilum, although the catenulate feature was not shown in this species (van der Plaäts-Niterink 1981). Two species, P. conidiophorum and P. salpingophorum, show similar morphological characteristics of globose sporangia (van der Plaäts-Niterink 1981). According to our and previous studies, it was suggested that the three species, P. tracheiphilum, P. conidiophorum, and P. salpingophorum, and an isolate, ZSF0093, having (sub-)globose sporangia, were phylogenetically closely related (Lévesque and de Cock 2004). Zoospores were observed in most species in clade 3 regardless of the shape of sporangia. When zoospores were observed, discharge tubes originating from sporangia tended to be longer than those of globose or ovoid sporangia and were 300 µm or more (Fig. 6h). The shapes or sizes of filamentous sporangia varied largely among or within isolates. Because the number of zoospores formed in a vesicle reflected the amount of protoplasm in the original sporangium, the number of zoospores in a vesicle was more variable than in globose sporangia, varying from two to about 40 or more.

A sexual stage was not observed in two isolates, UZ156 and UZ190. In the other isolates, oogonia of most species had a smooth surface, but a few isolates, *P. acanthicum* 

**Fig. 3** Relationships between phylogeny and morphology of *Pythium* based on the maximum likelihood (ML) phylogenetic tree using D1/D2 sequences. *Sp* sporangium morphology (*O* ovoid, obovoid or pyriform. *G* globose, subglobose, ellipsoid or cylindrical. *V* amorphous. *E* elongated shapes. *Fi* filamentous inflated. *Fn* filamentous noninflated. *C* catenulate). *Pa* papilla (+produced). *Pr* internal proliferation (+produced). *Zo* zoospores (+produced). *Og* surface wall of oogonia (*S* smooth. *O* ornamented). *Os* oospores (*A* aplerotic, *P* plerotic, *NP* nearly plerotic). *An* number of the antheridium per oogonium (*M* many antheridia undefined)

Drechsler, *P. oligandrum* Drechsler, and UZ655, formed oogonia with ornamented walls with acute spines (Fig. 6i). All isolates with ornamented oogonia clustered in a monophyletic group within clade 3, which was comparable with clade D in the previous study (Lévesque and de Cock 2004), revealing that species with ornamented oogonia were phylogenetically closely related. The extent of oospores within an oogonium, such as plerotic or aplerotic, and the number of antheridia per oogonium varied among or within isolates in this clade. Therefore, this clade was clearly characterized by filamentous sporangia, although one subclade was characterized by ornamented oogonia.

### Clade 4

Most species within clade 4 formed globose sporangia similar to those of clade 2 (Fig. 7a, b), although no sporangia were observed in two isolates, UZ253 and UZ290. Other shapes, such as ovoid, pyriform, ellipsoid, and cylindrical, were also observed in many isolates. Sporangia with papilla were only observed in UZ275 and UZ304 isolates and also known in P. marsipium (van der Plaäts-Niterink 1981). Although the structure was also known in P. rostratifingens De Cock & Lévesque (de Cock and Lévesque 2004), it was not observed in two isolates identified as this species, UZ354 and OPU1440. Zoospores were observed or known in less than half of all isolates within the clade, much fewer than in other clades. When zoospores were produced, the discharge tube was generally shorter than that of filamentous sporangia (Fig. 7c). Proliferating sporangia were formed in UZ275 and UZ304 isolates (Fig. 7d) and described in the reports in P. multisporum Poitras and P. middletonii (van der Plaäts-Niterink 1981). Unlike in the monograph by van der Plaäts-Niterink (1981), the OPU1443 isolate of *P. okanoganense* did not form this structure.

A sexual stage was not observed in eight isolates, UZ164, UZ213, UZ290, UZ304, UZ318, UZ400, ZSF0030, and ZSF0069. Among species in this clade, three, *P. heterothallicum* W. A. Campb. & F. F. Hendrix, *P. intermedium* de Bary, and *P. splendens*, are known to be heterothallic (van der Plaäts-Niterink 1981). As in the previous study, the UZ174 isolate identified as *P. splendens* did not form sexual reproductive organs in culture,



Fig. 4 Morphology of species in the genus Ovatisporangium. Ovoid sporangia with germ tubes (a Ovatisporangium sp. 1 UZ230, b Ovatisporangium sp. 2 UZ248). c Ovoid sporangium with a papilla of O. vexans. **d** Unique shape of sporangia of P. vexans. e Globose sporangium with two germ tubes of Ovatisporangium sp.2 UZ248. f Clavate sporangium with papilla of O. vexans. g Vesicle with zoospores of Ovatisporangium sp. 1 UZ230. h Empty sporangium after zoosporogenesis of O. vexans. i Internally proliferating sporangium of Ovatisporangium sp. 2 UZ248. j Smooth oogonium with broadly connected antheridium of O. vexans. k Smooth oogonium contacted by antheridium of Ovatisporangium sp.2 UZ248. Bar 20 µm



suggesting this isolate may be heterothallic. This isolate formed sexual organs in dual culture with a female isolate of P. splendens (CBS 266.69) but not in a dual culture with a male isolates of the species (CBS 462.48), indicating that the UZ174 isolate was a male isolate of this species. Both homothallic and heterothallic isolates are known in P. sylvaticum. The UZ307 isolate identified as P. sylvaticum formed sexual organs in single culture, i.e., the isolate is homothallic. Ornamented oogonia were known or observed in several species. The number and shape of the projections of their ornamented walls largely varied among species. For example, it was spine-like with a blunt tip (P. spinosum Sawada), conical with an acute tip (P. uncinulatum Plaäts-Nit. & I. Blok) or with a blunt tip, with occasionally branching dichotomously (P. paddicum Hirane) (Fig. 7f, g, i, j). Unlike the monophyly in clade 3, the species with ornamented oogonia were located in scattered positions within the clade.

Various characteristics of antheridial stalks or cells were also observed among isolates. The three isolates, UZ252, UZ253, and UZ285, formed swollen antheridial stalks similar to each other (Fig. 7h). When the antheridium did not contact the oogonium, its stalk was similar to a filamentous inflated sporangium. The other three isolates, UZ249, UZ263, and UZ284, produced many antheridia or slender antheridial stalks per oogonium surrounding the oogonium (Fig. 7k). All three isolates were closely related and formed a single subclade together with P. heterothallicum. Although P. heterothallicum is a heterothallic species, it produced many antheridia, often forming a complicated knot around the oogonium in dual culture. Therefore, this unique feature of the antheridium was also supported phylogenetically. Oospores were plerotic or aplerotic, and the features varied among or within isolates (Fig. 7f-l). Although a few morphological features characterized small subclades, there were no morphological characteristics of sexual organs common to all isolates within the clade. Therefore, clade 4 was only characterized by globose sporangia. However, the number of species forming zoospores was obviously small in this clade compared with other clades.

### Clade 5

Clade 5 was clearly characterized by very large elongated clavate sporangia (Fig. 8a, b). These characteristic are not

Fig. 5 Morphology of the genus *Pilasporangium*.
a Sickle-shape appressoria.
b Complexly branched secondary hyphae. c Intercalary globose sporangium.
d Intercalary smooth oogonia in chain with monoclinous antheridia and nearly plerotic oospores. e Smooth oogonium with diclinous antheridium and plerotic oospore. f Smooth oogonium with two oospores. *Bar* 20 μm



known in any *Pythium* species. Sporangia with papilla, internal proliferating sporangia, and zoospores are sometimes observed in most species. Although a sexual stage is not known in *P. undulatum* H. E. Petersen, all other species produced ornamented oogonia (Fig. 8c). There are fewer antheridia per oogonium than in other clades, which usually have one or none. Most morphological characteristics of the asexual and sexual stages are similar within the clade.

Based on relationships between morphology and phylogeny, it was shown that the sporangial morphology correlated with the phylogeny of Pythium. Although the same relationship between phylogeny and sporangial morphology had also been suggested in several previous studies (Briard et al. 1995; Matsumoto et al. 1999; Lévesque and de Cock 2004), more detailed variations among shapes were shown in this study. Previous studies had reported on two morphological shapes, filamentous and globose. However, the globose sporangia were further divided into three morphological types, globose, ovoid, and elongated shapes in this study based on the examination of more species. As a result, three clades, clades 1, 3, and 5, were clearly differentiated by sporangial morphology: ovoid, filamentous, and elongate clavate sporangia, respectively. Clades 2 and 4 were commonly characterized by globose sporangia, although they were distinguished from each other phylogenetically.

### Relationships between Pythium and related genera

Clade 1 was closely related to genera of Peronosporales (*Phytophthora* and *Halophytophthora*) in D1/D2 analyses. A similar phylogenetic relationship was indicated in several previous phylogenetic analyses based on the LSU

rDNA (Briard et al. 1995), rDNA ITS (Villa et al. 2006), and  $\beta$ -tubulin (Villa et al. 2006; Belbahri et al. 2008). Furthermore, a sister group between clade 1 and a monophyletic group of all genera of Peronosporales, including Phytophthora and Halophytophthora, was shown in this study and highly supported by 82% BV (ML) and 97% BV (NJ) (Fig. 1). Similarities between Pythium species within clade 1 and Phytophthora have been recognized in various studies. Ovoid-shaped sporangia with or without papilla were often formed in Pythium species of clade 1 and several Phytophthora species. In molecular characteristics, the 5S rDNA of the Pythium species of clade 1 were linked on the same strand within the intergenic spacer (IGS) region (Belkhiri et al. 1992). Although this position has not been seen in other Pythium species, it is commonly shown in Phytophthora species (Bedard et al. 2006). This evidence indicates that the members of clade 1 are clearly differentiated from Pythium species within the other clades and more closely related to Phytophthora than the other Pythium species.

On the other hand, the species of clade 1 were clearly differentiated from other genera in the linage by the formation of zoospores within a vesicle. Clade 1 was placed on the more basal line in the linage of Peronosporales. This hypothesis was also supported by other molecular phylogenetic analyses (Riethmüller et al. 1999; Cooke et al. 2000; Petersen and Rosendahl 2000). Therefore, it is suggested that the features of the formation of zoospore of clade 1 are ancestral features in this lineage, i.e., the formation of a vesicle may have disappeared in the evolution in the lineage.

Clade 2 was placed on a basal line in a monophyletic group, including clade 1 and genera of Peronosporales in the D1/D2 analysis. A species of clade 2, *P. apinafurcum*,

Fig. 6 Morphology of the genus Pythium. Filamentous inflated sporangium (a Pythium sp. 16 UZ379, b Pythium sp. 43 ZSF0011). c Filamentous noninflated sporangium of Pythium sp. 2 UZ156. d Adjacent globose sporangia of P. catenulatum. e Catenulate globose sporangia of Pythium sp. 42 OPU1449. f Adjacent subglobose sporangia of Pythium sp. 47 ZSF0093. g Pyriform sporangium with elongated tip of Pythium sp. 40 OPU797. h Vesicle with long discharge tube and zoospores of Pythium sp. 2 UZ156. i Ornamented oogonium with monoclinous antheridium of P. acanthicum. j Smooth oogonium with monoclinous antheridium of Pythium sp. 23 UZ419. k Smooth oogonium with several antheridia and plerotic oospore of P. torulosum. Bars 20 µm (Bar A for A–G, Bar K for I–K)



may be an ancestral species of the lineage, because it is located in a more basal position (Fig. 1). This species is characterized by complexly branched secondary hyphae, forms globose sporangia without papilla, and proliferates (Uzuhashi et al. 2009). These morphological characteristics were more similar to those of members of clade 4 than clade 1. The phylogenetic position of clade 2 in the lineage indicates that members of this lineage may have evolved from a P. apinafurcum-like species with globose sporangia. However, there is some doubt regarding the phylogenetic position, because clade 2 is composed of only one species. Therefore, the question of how ovoid sporangia evolved was not elucidated in this study. Further examination of the distribution in Pythium species, including clade 2, is necessary to clarify not only the phylogenetic position of clade 2 but also the evolution of several morphological characteristics, such as sporangia.

The shape of filamentous sporangia in clade 3 was clearly different from those of *Pythium* species in other clades. This difference of sporangial morphology in *Pythium* species has been noted by previous research (Fischer

1892; Schröter 1897; Sideris 1931) in which species with filamentous sporangia were differentiated at the generic level. Although it was clear that clade 3 was phylogenetically distantly related to other clades, the phylogenetic position of clade 3 among *Pythium* species was has not yet been elucidated because it differed among trees. Likewise, the question of how filamentous sporangia evolved within *Pythium* has not been resolved.

### Taxonomy

The results of this phylogenetic analyses based on comprehensive sequence data of the nuclear rDNA D1/D2 region and mitochondrial gene (*cox*II) show that the genus *Pythium* is a nonmonophyletic group, and the members include phylogenetically diverse organisms. These results indicate that taxonomic revisions are necessary in the genus *Pythium*. In all phylogenetic trees, *Pythium* species were divided into five strongly or moderately supported clades. Each clade was characterized by sporangial

Fig. 7 Morphology of the genus Globisporangium. a Terminal globose sporangium of Globisporangium sp. 9 (UZ275). b Intercalary globose sporangium of Pythium sp. ZSF0069. c Vesicle with zoospores of Globisporangium sp. 9 (UZ275). d Internally proliferating sporangium of Globisporangium sp. 9 (UZ275). e Internally proliferating sporangium of Globisporangium sp. 13 (UZ304). f Ornamented oogonium with finger-like projection and diclinous antheridia of P. spinosum. g Ornamented oogonium with bold and dichotomous projections of G. paddicum. **h** Smooth oogonium, antheridium with stalk complexly lobed, and aplerotic oospore of Globisporangium sp. 5 UZ252. i Ornamented oogonium with conical and acute projections of G. uncinulatum. j Ornamented oogonium with finger-like projection, monoclinous antheridia and aplerotic oospore of G. irregulare. k Smooth oogonium with many antheridia of *Globisporangium* sp. 8 UZ284. I Smooth oogonium with plerotic oospore of G. rostratum. Bar 20 µm





Fig. 8 Morphology of the genus *Elongisporangium*. a Elongated clavate sporangia of *Elongisporangium* sp. 1 ZSF0056. b Terminal elongated clavate sporangium with a papilla of *Elongisporangium* 

morphology. Thus, the sporangial shape is regarded as an important taxonomic criterion. It was concluded that morphological and phylogenetic differences among clades deserve recognition of the generic level according to a comparison of taxonomic criteria used for related genera.

sp.1 ZSF0056. c Ornamented oogonium with ebetate projections of *Elongisporangium* sp.1 ZSF0056. *Bars* 20 µm

Among the five clades, three (1, 3, and 5) were differentiated by their sporangial shapes and were strongly supported by most phylogenetic trees. Based on these results, each of their three clades was identified as a separate genus. On the other hand, clades 2 and 4 were characterized by globose sporangia and were difficult to differentiate by morphological characteristics. Although the monophyly of clade 4 was not resolved, it is clear that the members of clade 4 are closely related and can be clearly differentiated from clade 2 and the others phylogenetically. Therefore, it was concluded that clade 4 should be considered a single genus. Further phylogenetic analyses, including more isolates, are needed to resolve the phylogeny of the clade and relationships among clades. Likewise, clade 2 is phylogenetically differentiated from all other clades, including clade 4, having similar globose sporangia. Thus, it is considered as a separate genus. As a result, the genus *Pythium* Pringsh. was divided into five genera, four of which are new.

The type species of *Pythium* defined by Pringsheim (1858), *P. monospermum*, was included in clade 3. Therefore, the genus *Pythium* was restricted to species producing filamentous sporangia clustered as in clade 3. According to the morphology and phylogeny in this and previous studies, 57 species were redefined as members of the genus *Pythium*.

The first new genus, named Ovatisporangium, is characterized by ovoid sporangia (clade 1). It has been debated whether species belonging to the genus are appropriately classified as Pythium (Briard et al. 1995; Panabieres et al. 1997; Dick 2001b; Villa et al. 2006; Belbahri et al. 2008). Our study resolved this debate by establishing clade 1 as an independent genus. It is occasionally difficult to differentiate Ovatisporangium species from other species of two new genera, *Globisporangium* (clade 4; mentioned below) and Pilasporangium (clade 2; mentioned below), because globose sporangia formed in many species of the Ovatisporangium, are sometimes formed in species of the two genera. Therefore, molecular characteristics are a useful tool for classification of species in each genus. Based on phylogeny and morphology, 15 species were transferred to Ovatisporangium from Pythium Pringsh.

The second new genus, named *Elongisporangium*, was erected for species with elongated clavate sporangia (clade 5). Based on the morphology and phylogeny, five species were transferred to this genus from *Pythium* Pringsh.

The third new genus, named *Globisporangium*, is characterized by globose sporangia (clade 4). Because this shape is similar to those of *Ovatisporangium* and *Pilasporangium* (clade 2; mentioned below), molecular phylogenetic analyses are often needed to classify each genus. In contrast to other genera, the monophyly of this new genus was not strongly supported. Thus, it is suggested that the genus was composed of phylogenetically various species. Therefore, further examination of the taxonomy of *Globisporangium* may be needed based on morphology or phylogeny of other species, such as the new species

included in this genus. According to the morphological and phylogenetic characteristics, 68 species were transferred to this genus from *Pythium* Pringsh.

The last new genus, named *Pilasporangium*, is composed of only one species, *P. apinafurcum* (clade 2). Isolation and examination of the morphology and phylogeny of many species included in this genus are needed to clarify the characterization of this genus. Likewise, in *Ovatisporangium* and *Globisporangium*, molecular phylogenetic analyses are needed to classify this genus.

#### Key to genera

| 1 | Sporangia filamentous,                                           | Pythium          |
|---|------------------------------------------------------------------|------------------|
|   | Sporangia not filamentous                                        |                  |
| 2 | Sporangia usually globose                                        |                  |
| 2 | Sporangia mainly ovoid to pyriform, sometimes irregularly shape  | Ovatisporangium  |
| 3 | Sporangia clavate to elongate                                    | Elongisporangium |
| 3 | Sporangia sometimes proliferating                                | Globisporangium  |
|   | Sporangia not proliferating, secondary hyphae branched complexly | Pilasporangium   |

Pythium Pringsh. emend. Uzuhashi, Tojo & Kakish. Fig. 6

Mycelium well developed, often with appressoria. Hyphae hyaline, aseptate. Sporangia either filamentous, not differentiated from the vegetative hyphae, or consisting of lobate or toruloid inflated elements, or occasionally globose in a chain. Sporangial contents move and form a vesicle at the tip with an undifferentiated mass of protoplasm; this mass then differentiates into a number of biflagellate zoospores. Oogonia (sub-)globose, terminal or intercalary, with a smooth or ornamented wall. Antheridia 1 to several per oogonium, sometimes absent, monoclinous, diclinous or hypogynous, stalked or sessile, of various shapes. Oospores usually single, rarely two or more in an oogonium, plerotic or aplerotic with a thin or thick wall.

*Pythium* species occur as saprophytes or parasites in soils, water, or on plant or animal substrates.

Type species: *Pythium monospermum* Pringsh., Jb. Wiss. Bot. 1: 288, 1858.

Additional species of the Pythium.

*Pythium acanthicum* Drechsler, J. Wash. Acad. Sci. 20: 408, 1930.

*Pythium adhaerens* Sparrow, Ann. Bot., Lond. 45: 258, 1931.

*Pythium amasculinum* Y. N. Yu, Acta microbiol. sin. 13: 118, 1973.

*Pythium angustatum* Sparrow, Ann. Bot., Lond. 45: 272, 1931.

*Pythium aphanidermatum* (Edson) Fitzp., Mycologia 15: 168, 1923.

*Pythium apleroticum* Tokun., in Ito & Tokunaga, Trans. Sapporo nat. Hist. Soc. 14: 12, 1935.

*Pythium aquatile* Höhnk, Veröff. Inst. Meeresf. Bremerhaven 2: 94, 1953.

*Pythium aristosporum* Vanterp., Ann. appl. Biol. 25: 537, 1938.

*Pythium arrhenomanes* Drechsler, Phytopathology 18: 874, 1928.

*Pythium capillosum* B. Paul, Trans. Br. mycol. Soc. 89: 195, 1987.

*Pythium catenulatum* V. D. Matthews, Stud. Genus *Pythium*: 47, 1931.

*Pythium caudatum* (G.L. Barron) M.W. Dick, Straminipilous Fungi, Systematics of the Peronosporomycetes Including Accounts of the Marine Straminipilous Protists, the Plasmodiophorids and Similar Organisms (Dordrecht): 294, 2001.

*Pythium chondricola* De Cock, Mycotaxon 25: 102, 1986.

*Pythium coloratum* Vaartaja, Mycologia 57: 417, 1965. *Pythium conidiophorum* Jokl, Oesterr Bot. Ztschr. 67: 33, 1918.

*Pythium contiguanum* B. Paul, FEMS Microbiol. Lett. 183: 108, 2000.

Pythium deliense Meurs, Phytopath. Z. 7: 176, 1934.

*Pythium diclinum* Tokun., in Ito & Tokunaga, Trans. Sapporo nat. Hist. Soc. 14: 12, 1935.

*Pythium dissimile* Vaartaja, Mycologia 57: 421, 1965. *Pythium dissotocum* Drechsler, J. Wash. Acad. Sci. 20: 402, 1930.

*Pythium flevoense* Plaäts-Nit., Acta bot. neerl. 21: 636, 1972.

Pythium folliculosum B. Paul, Mycol. helv. 4: 204, 1991.

*Pythium graminicola* Subramaniam, Bull. Agric. Res. Inst. Pus. 177: 1, 1928 [as 'graminicolum'].

*Pythium grandisporangium* Fell & Master, Can. J. Bot. 53: 2920, 1975.

*Pythium hydnosporum* (Mont.) J. Schröt., in de Bary, Abh. senckenb. naturforsch. Ges. 12: 19, 1879.

*Pythium inflatum* V. D. Matthews, Stud. Genus *Pythium*: 45, 1931.

*Pythium insidiosum* De Cock, L. Mend., A. A. Padhye, Ajello & Kaufman, J. Clin. Microbiol. 25: 345, 1987.

*Pythium kasuhmirense* B. Paul, FEMS Microbiol. Lett. 282: 253, 2008.

*Pythium lutarium* Ali-Shtayeh, in Al-Shtayeh & Dick, J. Linn. Soc., Bot. 91: 309, 1985.

*Pythium lycopersicum* G. Karaca, G. Tepedelen, & B. Paul, FEMS Microbiol. Lett. 288: 165, 2008.

*Pythium marinum* Sparrow, Dansk bot. Ark. 8: 5, 1934. *Pythium myriotylum* Drechsler, J. Wash. Acad. Sci. 20: 404, 1930.

*Pythium oligandrum* Drechsler, J. Wash. Acad. Sci. 20: 409, 1930.

*Pythium pachycaule* Ali-Shtayeh, in Ali-Shtayeh & Dick, J. Linn. Soc., Bot. 91: 313, 1985.

*Pythium papillatum* V. D. Matthews, J. Elisha Mitchell scient. Soc. 43: 231, 1928.

*Pythium pectinolyticum* B. Paul, FEMS Microbiol. Lett. 199: 56, 2001.

Pythium periilum Drechsler, J. Wash. Acad. Sci. 20: 403, 1931.

*Pythium periplocum* Drechsler, J. Wash. Acad. Sci. 20: 405, 1930.

*Pythium perniciosum* Serbinow, Scripta Bot. Horti Univ. Imper. Petrop. 28: 29, 1912.

*Pythium phragmitis* Nechw., in Nechwatal, Wielgoss & Mendgen, Mycol. Res. 109: 1343, 2005.

*Pythium plurisporium* Abad, Shew, Grand & L.T. Lucas, Mycologia 87: 897, 1996.

*Pythium polycarpum* B. Paul, Hydrobiologia 131: 31, 1986.

*Pythium porphyrae* M. Takah. & M. Sasaki, Trans. Mycol. Soc. Japan 18: 280, 1977.

*Pythium pyrilobum* Vaartaja, Mycologia 57: 425, 1965. *Pythium rhizo-oryzae* B. Paul, in Bala, Gautam & Paul, Curr. Microbiol. 52: 104, 2006.

*Pythium salpingophorum* Drechsler, J. Wash. Acad. Sci. 20: 407, 1931.

*Pythium scleroteichum* Drechsler, J. Agric. Res., Washington 49: 881, 1934.

*Pythium sukuiense* W. H. Ko, Shin Y. Wang & Ann, Mycologia 96: 647, 2004.

*Pythium sulcatum* R. G. Pratt & J. E. Mitch., Can. J. Bot. 51: 334, 1973.

*Pythium tardicrescens* Vanterp. Ann. appl. Biol. 25: 533, 1938.

*Pythium tenue* Gobi, Script. Bot. Hort. Petr. Fasc. 15: 211, 1899.

*Pythium torulosum* Coker & P. Patt., J. Elisha Mitchell scient. Soc. 42: 247, 1927.

*Pythium tracheiphilum* Matta, Phytopath. Mediterr. 4: 51, 1965.

*Pythium vanterpoolii* V. Kouyeas & H. Kouyeas, Annals Inst. Phytopath. Benaki, N.S. 5: 210, 1963.

*Pythium volutum* Vanterp. & Truscott, Can. J. Res. 6: 77, 1932.

Pythium zingiberis M. Takah., Ann. Phytopath. Soc. Japan 18: 115, 1954 [as 'zingiberum'].

# Ovatisporangium Uzuhashi, Tojo & Kakish., gen. nov. Fig. 4.

Mycelium bene evolvens, ex hyphis principalibus hyalinis, ramosis, nonseptatis, demum raro septatis compositum. Appressoria saepe efferentia. Sporangia terminalia, intercalaria vel latetaliter sessilia in hyphis, ovoidea, obovoidea, globosa, subglobosa, pyriformia vel obpyriformia, saepe papillata et interne prolifera. Zoosporae biflagellatae in vesicula protoplasmatis sporangii formantes. Oogonia terminalia vel intercalaria, globosa vel subglobosa, pariete laevi vel ornato. Antheridia monoclina, diclina vel hypogyna. Oosporae globosae, vulgo una in oogonio, pleroticae vel apleroticae.

Mycelium well developed, often with appressoria. Hyphae hyaline, aseptate, rarely septate in old. Sporangia terminal, intercalary or laterally sessile on hyphae, (ob-)ovoid, (sub-)globose, lemon-shaped, clavate or various shapes, sometimes papillate and internally proliferating. Zoospores biflagellate, formed in a vesicle of sporangial protoplasm. Oogonia terminal or intercalary, (sub-)globose, with a smooth or ornamented wall. Antheridia variable in the shape, one to several per oogonium, sometimes absent, monoclinous, diclinous or hypogynous, stalked or sessile. Oospores globose, usually single in an oogonium, plerotic or aplerotic with a thin or thick wall.

*Ovatisporangium* species occur as saprophytes or parasite in soils, water, or on plant substrates.

Type species: *Ovatisporangium helicoides* (Drechsler) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium helicoides* Drechsler, J. Wash. Acad. Sci. 20: 413, 1931.

Additional species of Ovatisporangium.

Ovatisporangium boreale (R. L. Duan) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium boreale* R. L. Duan, Acta Mycol. Sin. 4: 1, 1985 [as 'borealis'].

Ovatisporangium carbonicum (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium carbonicum* B. Paul, FEMS Microbiol. Lett. 219: 270, 2003.

Ovatisporangium chamaehyphon (Sideris) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium chamaehyphon* Sideris, Mycologia 24: 33, 1932.

Ovatisporangium citrinum (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium citrinum* B. Paul, FEMS Microbiol. Lett. 234: 273, 2004.

Ovatisporangium cucurbitacearum (S. Takim.) Uzuhashi, Tojo & Kakish., comb. nov. Basionym: Pythium cucurbitacearum S. Takim., Ann. Phytopath. Soc. Japan 11: 91, 1941.

Ovatisporangium indigoferae (E. J. Butler) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium indigoferae* E. J. Butler, Mem. Dep. Agric. India 1: 73, 1907.

Ovatisporangium litorale (Nechw.) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium litorale* Nechw., in Nechwatal & Mendgen, FEMS Microbiol. Lett. 255: 99, 2006.

Ovatisporangium megacarpum (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium megacarpum* B. Paul, FEMS Microbiol. Lett. 186: 231, 2000.

Ovatisporangium mercuriale (Belbahri, B. Paul & Lefort) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium mercuriale* Belbahri, B. Paul & Lefort, FEMS Microbiol. Lett. 284: 20, 2008.

Ovatisporangium montanum (Nechw.) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium montanum* Nechw., in Nechwatal & Wsswald, Mycol. Prog. 2: 79, 2003.

Ovatisporangium oedichilum (Drechsler) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium oedichilum* Drechsler, J. Wash. Acad. Sci. 20: 414, 1931.

*Ovatisporangium ostracodes* (Drechsler) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium ostracodes* Drechsler, Phytopathology 33: 286, 1943.

Ovatisporangium sterile (Belbahri & Lefort) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium sterile* Belbahri & Lefort, in Belbahri, Calmin, Sanchez-Hernandez, Oszako & Lefort, FEMS Microbiol. Lett. 255: 210, 2006 [as '*sterilum*'].

Ovatisporangium vexans (de Bary) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium vexans* de Bary, J. Bot. Paris 14: 105, 1896.

Globisporangium Uzuhashi, Tojo & Kakish., gen. nov. Fig. 7.

Mycelium bene evolvens, ex hyphis principalibus hyalinis, ramosis, nonseptatis, demum raro septatis compositum. Appressoria saepe efferentia. Sporangia terminalia, intercalaria vel latetaliter sessilia in hyphis, globosa vel clavata, saepe papillata et interne prolifera. Zoosporae biflagellatae in vesicula protoplasmatis sporangii formantes. Oogonia terminalia vel intercalaria, globosa, subglobosa, pariete laevi vel ornato. Antheridia monoclina, diclina vel hypogyna. Oosporae globosae, vulgo una in oogonio, pleroticae vel apleroticae. Mycelium well developed, often with appressoria. Hyphae hyaline, aseptate, rarely septate in old. Sporangia terminal, intercalary or laterally sessile on hyphae, (sub-)globose, lemon-shaped or clavate, sometimes internally proliferating. Zoospores biflagellate, formed in a vesicle of sporangial protoplasm. Oogonia terminal or intercalary, (sub-)globose, with a smooth or ornamented wall. Antheridia variable in the shape, one to several per oogonium, sometimes absent, monoclinous, diclinous or hypogynous, stalked or sessile. Oospores globose, usually single in an oogonium, plerotic or aplerotic with a thin or thick wall.

*Globisporangium* species occur as saprophytes or parasites in soils, water, or on plant or animal substrates.

Type species: *Globisporangium paroecandrum* (Drechsler) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium paroecandrum* Drechsler, J. Wash. Acad. Sci. 20: 406, 1930.

Additional species of Globisporangium.

Globisporangium abappressorium (Paulitz & M. Mazzola) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium abappressorium* Paulitz & M. Mazzola, in Paulitz, Admas & Mazzola, Mycologia 95:

81, 2003.*Globisporangium acrogynum* (Y. N. Yu) Uzuhashi,Tojo & Kakish., comb. nov.

Basionym: *Pythium acrogynum* Y. N. Yu, Acta microbiol. sin. 13: 117, 1973.

*Globisporangium acanthophoron* (Sideris) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium acanthophoron* Sideris, Mycologia 24: 36, 1932.

*Globisporangium apiculatum* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium apiculatum* B. Paul, FEMS Microbiol. Lett. 263: 195, 2006.

*Globisporangium attrantheridium* (Allain-Boulé & Lévesque) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium attrantheridium* Allain-Boulé & Lévesque, in Allain-Boulé, Tweddell, Mazzola, Bélanger &

Lévesque, Mycol. Res. 108: 798, 2004. Globisporangium bifurcatum (B. Paul) Uzuhashi, Tojo &

Kakish., comb. nov.

Basionym: *Pythium bifurcatum* B. Paul, FEMS Microbiol. Lett. 224: 217, 2003.

*Globisporangium buismaniae* (Plaäts-Nit.) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium buismaniae* Plaäts-Nit., Stud. Mycol. 21: 44, 1981.

*Globisporangium carolinianum* (V. D. Matthews) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium carolinianum* V. D. Matthews, Stud. Genus *Pythium*: 71, 1931.

Globisporangium campanulatum (R. Mathew, K. K. Singh & B. Paul) Uzuhashi, Tojo & Kakish., comb. nov. Basionym: Pythium campanulatum R. Mathew, K. K.

Singh & B. Paul, FEMS Microbiol. Lett. 226: 10, 2003.

*Globisporangium canariense* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium canariense* B. Paul, FEMS Microbiol. Lett. 208: 136, 2002.

*Globisporangium cryptoirregulare* (Garzón, Yánez & Moorman) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium cryptoirregulare* Garzón, Yánez & Moorman, Mycologia 99: 300, 2007.

*Globisporangium cylindrosporum* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium cylindrosporum* B. Paul, Int. J. Mycol. Lichenol. 4: 339, 1992.

Globisporangium cystogenes (De Cock & Lévesque) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium cystogenes* De Cock & Lévesque, Stud. Mycol. 50: 484, 2004.

*Globisporangium debaryanum* (R. Hesse) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium debaryanum* R. Hesse, Diss. Halle.: 34, 1874 [as '*de-baryanum*'].

*Globisporangium echinulatum* (V. D. Matthews) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium echinulatum* V. D. Matthews, Stud. Genus Pythium: 101, 1931.

*Globisporangium erinaceum* (J. A. Robertson) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium erinaceum* J. A. Robertson, N. Z. Jl Bot. 17: 283, 1977.

*Globisporangium glomeratum* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium glomeratum* B. Paul, FEMS Microbiol. Lett. 225: 49, 2003.

*Globisporangium heterothallicum* (W. A. Campb. & F. F. Hendrix) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium heterothallicum* W. A. Campb. & F. F. Hendrix, Mycologia 60: 803, 1968.

*Globisporangium hypogynum* (Middleton) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium hypogynum* Middleton, Phytopathology 31: 863, 1941.

Globisporangium intermedium (de Bary) Uzuahshi & Tojo, comb. nov.

Basionym: *Pythium intermedium* de Bary, Bot. Ztg. 39: 554, 1881.

*Globisporangium irregulare* (Buisman) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium irregulare* Buisman, Meded. Phytopath. Labor. Willie Commelin Scholten Baarn 11: 38, 1927. *Globisporangium iwayamae* (S. Ito) Uzuhashi, Tojo & Kakish., comb. nov.

- Basionym: *Pythium iwayamae* S. Ito, in Ito & Tokunaga, Trans. Sapporo nat. Hist. Soc. 14: 13, 1935.
- Globisporangium kunmingense (Y. N. Yu) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium kunmingense* Y. N. Yu, Acta microbial. sin. 13: 119, 1973.
- *Globisporangium longandrum* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium longandrum* B. Paul, FEMS Microbiol. Lett. 202: 240, 2001.
- *Globisporangium longisporangium* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium longisporangium* B. Paul, FEMS Microbiol. Lett. 246: 208, 2005.
- *Globisporangium lucens* (Ali-Shtayeh) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium lucens* Ali-Shtayeh, in Ali-Shtayeh & Dick, J. Linn. Soc., Bot. 91: 303, 1985.
- *Globisporangium macrosporum* (Vaartaja & Plaäts-Nit.) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium macrosporum* Vaartaja & Plaäts-Nit., in van der Plaäts-Niterink, Stud. Mycol. 21: 89, 1981.
- *Globisporangium mamillatum* (Meurs) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium mamillatum* Meurs, Wortelrot veroorzaakt door Schimmels uit de Gesl Pythium en Aphanomyces Proefschr Univ Utrecht: 39, 1928.
- Globisporangium marsipium (Drechsler) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium marsipium* Drechsler, Phytopathology 31: 505, 1941.
- Globisporangium mastophorum (Drechsler) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium mastophorum* Drechsler, J. Wash. Acad. Sci. 20: 411, 1930.
- *Globisporangium megalacanthum* (de Bary) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium megalacanthum* de Bary, Abh Senckenb Naturforsch Ges 12: 242, 1981.
- *Globisporangium middletonii* (Sparrow) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium middletonii* Sparrow, Aquatic Phycomycetes Edn 2 (Ann Arbor): 1038, 1960.
- *Globisporangium minor* (Ali-Shtayeh) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium minor* Ali-Shtayeh, in Ali-Shtayeh & Dick, J. Linn. Soc., Bot. 91: 299, 1985.
- *Globisporangium multisporum* (Poitras) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium multisporum* Poitras, Mycologia 41: 171, 1949.

*Globisporangium nagaii* (S. Ito & Tokun.) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium nagaii* S. Ito & Tokun., J. Fac. Agric., Hokkaido Imp. Univ. Sapporo 32: 209, 1933 [as '*nagae*'].

- Globisporangium nodosum (B. Paul, D Galland,
- T. Bhatn. & Dulieu) Uzuhashi, Tojo & Kakish., comb. nov. Basionym: *Pythium nodosum* B. Paul, D Galland,
- T. Bhatn. & Dulieu, FEMS Microbiol. Lett. 158: 209, 1998. *Globisporangium nunn* (Lifsh., Stangh. & R. E. D. Baker) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium nunn* Lifsh., Stangh. & R. E. D. Baker, Mycotaxon 20: 374, 1984.
- *Globisporangium okanoganense* (P. E. Lipps) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionnym: *Pythiumn okanoganense* P. E. Lipps, Mycologia 72: 1127, 1980.
- *Globisporangium ornacarpum* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium ornacarpum* B. Paul, FEMS Microbiol. Lett. 180: 340, 1999.
- *Globisporangium orthogonon* (Ahrens) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium orthogonon* Ahrens, Z. PflKrankh. PflPath. PflSchutz 78: 177, 1971.
- *Globisporangium paddicum* (Hirane) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium paddicum* Hirane, Trans. Mycol. Soc. Japan 2: 85, 1960.
- *Globisporangium parvum* (Ali-Shtayeh) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium parvum* Ali-Shtayeh, in Ali-Shtayeh & Dick, J. Linn. Soc., Bot. 91: 303, 1985.
- *Globisporangium perplexum* (H. Kouyeas & Theoh.) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium perplexum* H. Kouyeas & Theoh., Annals Inst. Phytopath. Benaki, N.S. 11: 287, 1977.
- Globisporangium pleroticum (Take. Itô) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium pleroticum* Take. Itô, J. Jpn. Bot. 20: 59, 1944.
- *Globisporangium polymastum* (Drechsler) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium polymastum* Drechsler, J. Wash. Acad. Sci. 20: 412, 1930.
- *Globisporangium proliferatum* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium proliferatum* B. Paul, FEMS Microbiol. Lett. 206: 193, 2002.
- *Globisporangium pulchrum* (Minden) Uzuhashi, Tojo & Kakish., comb. nov.
- Basionym: *Pythium pulchrum* Minden, in Falck, Falck. Mykol. Unters. 2: 224, 1916.

*Globisporangium radiosum* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium radiosum* B. Paul, Mycol. Helv. 5: 2, 1992.

*Globisporangium ramificatum* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium ramificatum* B. Paul, Hydrobiologia 140: 235, 1986.

*Globisporangium recalcitrans* (Belbahri & Maralejo) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium recalcitrans* Belbahri & Maralejo, Mycologia 100: 312, 2008.

*Globisporangium regulare* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium regulare* B. Paul, Curr. Microbiol. 47: 310, 2003.

Globisporangium rhizosaccharum (K. K. Singh, R. Mathew, Masih & Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium rhizosaccharum* K. K. Singh, R. Mathew, Masih & Paul, FEMS Microbiol. Lett. 221:

234, 2003. Globosum rostratifingens (De Cock & Lévesque)

Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium rostratifingens* De Cock & Lévesque, Stud. Mycol. 50: 485, 2004.

*Globisporangium rostratum* (E. J. Butler) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium rostratum* E. J. Butler, Mem. Dep. Agric. India, Bot. Ser. 1: 84, 1907.

Globisporangium salinum (Höhnk) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium salinum* Höhnk, Veröff. Inst. Meeresf. Bremerhaven 2: 89, 1953.

*Globisporangium segnitium* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium segnitium* B. Paul, FEMS Microbiol. Lett. 217: 210, 2002.

*Globisporangium solare* (De Cock, Melero-Vara, Y. Serrano & Julio Gómez) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium solare* De Cock, Melero-Vara, Y. Serrano & Julio Gómez, Mycol. Res. 112: 1117, 2008.

*Globisporangium spiculum* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium spiculum* B. Paul, in Lassaad, Calmin, Sanchez-Hernandez & Lefort, FEMS Microbiol. Lett. 254: 319, 2006.

*Globisporangium spinosum* (Sawada) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium spinosum* Sawada, J. Nat. Hist. Soc. Formosa 16: 199, 1926.

*Globisporangium splendens* (Hans Braun) Uzuhashi, Tojo & Kakish., comb. nov. Basionym: *Pythium splendens* Hans Braun, J. Agric. Res. 30: 1061, 1925.

*Globisporangium sylvaticum* (W. A. Campb. & F. F. Hendrix) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium sylvaticum* W. A. Campb. & F. F. Hendrix, Mycologia 59: 274, 1967.

*Globisporangium terrestre* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium terrestre* B. Paul, FEMS Microbiol. Lett. 212: 256, 2002 [as '*terrestris*'].

*Globisporangium toruloides* (B. Paul) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium toruloides* B. Paul, Trans. Br. mycol. Soc. 86: 331, 1986.

Globisporangium ultimum (Trow) Uzuhashi, Tojo & Kakish., comb. nov. var. ultimum.

Basionym: *Pythium ultimum* Trow, Ann Bot 15: 300, 1901. var. *ultimum*.

*Globisporangium ultimum* var. *sporangiiferum* (Drechsler) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium ultimum* var. *sporangiiferum* Drechsler, Sydowia 14: 107, 1960 [as '*sporangiferum*'].

*Globisporangium uncinulatum* (Plaäts-Nit. & I. Blok) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium uncinulatum* Plaäts-Nit. & I. Blok, Neth. Jl Pl. Path. 84: 135, 1978.

*Globisporangium violae* (Chesters & Hickman) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium violae* Chesters & Hickman, Trans. Br. mycol. Soc. 27: 60, 1944.

*Elongisporangium* Uzuhashi, Tojo & Kakish., gen. nov. Fig. 8.

Mycelium bene evolvens, ex hyphis principalibus hyalinis, ramosis, nonseptatis, demum raro septatis compositum. Appressoria saepe efferentia. Chlamydosporae raro formantes. Sporangia vulgo clavata usque elongata, saepe papillata et interne prolifera. Zoosporae biflagellatae in vesicula protoplasmatis sporangii formantes. Oogonia terminalia vel intercalaria, globosa vel subglobosa, pariete ornato. Antheridia monoclina, diclina vel hypogyna. Oosporae globosae, vulgo una in oogonio, pleroticae vel apleroticae.

Mycelium well developed, often with appressoria, rarely with chlamydospores. Hyphae hyaline, aseptate, rarely septate in old. Sporangia mostly terminal, clavate to elongate, sometimes papillate and internally proliferating. Zoospores biflagellate, formed in a vesicle of sporangial protoplasm. Oogonia terminal or intercalary, (sub-)globose, with a ornamented wall. Antheridia variable in the shape, 1–2 per oogonium, sometimes absent, monoclinous, diclinous or hypogynous, stalked or sessile. Oospores globose, usually single in an oogonium, plerotic or aplerotic with a thin or thick wall. *Elongisporangium* species occur as saprophytes or parasite in soils, water, or on plant substrates.

Type species: *Elongisporangium anandrum* (Drechsler) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium anandrum* Drechsler, J. Wash. Acad. Sci. 20: 410, 1930.

Additional species of *Elongisporangium*.

*Elongisporangium dimorphum* (F. F. Hendrix & W. A. Campb.) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium dimorphum* F. F. Hendrix & W. A. Campb, Mycologia 63: 979, 1971.

*Elongisporangium helicandrum* (Drechsler) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium helicandrum* Drechsler, Bull. Torrey bot. Club 77: 255, 1950.

*Elongisporangium prolatum* (W. A. Campb. & F. F. Hendrix) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium prolatum* W. A. Campb. & F. F. Hendrix, in Hendrix & Campbell, Mycologia 61: 387,

1969.

*Elongisporangium undulatum* (H. E. Petersen) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium undulatum* H. E. Petersen, Annls mycol. 8: 531, 1910.

Pilasporangium Uzuhashi, Tojo & Kakish., gen. nov. Fig. 5.

Mycelium bene evolvens, ex hyphis principalibus hyalinis, ramosis, nonseptatis, demum raro septatis compositum. Appressoria saepe efferentia. Sporangia terminalia vel intercalaria, globosa vel subglobosa. Zoosporae biflagellatae in vesicula protoplasmatis sporangii formantes. Oogonia terminalia vel intercalaria globosa vel subglobosa, pariete laevi. Antheridia monoclina, diclina vel hypogyna. Oosporae globosae, una vel duae in oogonio, pleroticae vel apleroticae.

Mycelium well developed, often with appressoria. Hyphae hyaline, aseptate, rarely septate in old. Sporangia terminal or intercalary, globose. Zoospores biflagellate, formed in a vesicle of sporangial protoplasm. Oogonia terminal or intercalary, (sub-)globose, with a smooth wall. Antheridia variable in the shape, one to several per oogonium, sometimes absent, monoclinous, diclinous or hypogynus, stalked or sessile. Oospores globose, one to two in an oogonium, plerotic or aplerotic with a thin or thick wall.

*Pilasporangium* species occur as saprophyte or parasite in soils, water, or on plant substrates.

Type species: *Pilasporangium apinafurcum* (Uzuhashi & Tojo) Uzuhashi, Tojo & Kakish., comb. nov.

Basionym: *Pythium apinafurcum* Uzuhashi & Tojo, Mycoscience 50: 283, 2009.

The genus Pilasporangium includes only one species.

### References

- Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723
- Allain-Boulé N, Tweddell R, Mazzola M, Bélanger R, Lévesque CA (2004) Pythium attrantheridium sp. nov.: taxonomy and comparison with related species. Mycol Res 108:795–805
- Bedard JEJ, Schurko AM, de Cock AWAM, Klassen GR (2006) Diversity and evolution of 5S rRNA gene family organization in *Pythium*. Mycol Res 110:86–95

Belbahri L, McLeod A, Paul B, Calmin G, Moralejo E, Spies CF, Botha WJ, Clemente A, Descals E, Sánchez-Hernández E, Lefort F (2008) Intraspecific and within-isolate sequence variation in the ITS rRNA gene region of *Pythium mercuriale* sp. nov. (Pythiaceae). FEMS Microbiol Lett 284:17–27

Belkhiri A, Buchko J, Klassen GR (1992) The 5S ribosomal RNA gene in *Pythium* species: two different genomic locations. Mol Biol Evol 9:1089–1102

Blair JE, Coffey MD, Park SY, Geiser DM, Kang S (2008) A multilocus phylogeny for *Phytophthora* utilizing markers derived from complete genome sequences. Fungal Genet Biol 45:266– 277

Briard M, Dutertre M, Rouxel F, Brygoo Y (1995) Ribosomal RNA sequence divergence within the Pythiaceae. Mycol Res 99:1119– 1127

Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of *Phytophthora* and related Oomycetes. Fungal Genet Biol 30:17–32

de Cock AWAM, Lévesque CA (2004) New species of *Pythium* and *Phytophthora*. Stud Mycol 50:481–487

de Cock AWAM, Mendoza L, Padhye AA, Ajello L, Kaufman L (1987) Pythium insidiosum sp. nov., the etiologic agent of pythiosis. J Clin Microbiol 25:344–349

de Cock AWAM, Lévesque CA, Melero-Vara JM, Serrano Y, Guirado ML, Gómez J (2008) *Pythium solare* sp. nov., a new pathogen of green beans in Spain. Mycol Res 112:1115–1121

Dick MW (1990) Key to Pythium. Published by the author, Reading

Dick MW (1999) Classification of the Peronosporomycetes. In: Robinson R, Batt C, Patel P (eds) Encyclopaedia of food microbiology, vol 2. Academic press, London, pp 871–882

Dick MW (2001a) Straminipilous Fungi: systematics of the Peronosporomycetes including accounts of the marine straminipilous protists, the Plasmodiophorids and similar organisms. Kluwer Academic Publishers, Dordrecht

Dick MW (2001b) The Peronosporomycetes. In. McLaughlin Dj, McLaughlin EG, Lemke PA (eds) The Mycota VII PartA. Systematics and evolution. Springer Verlag, Berlin, pp 39–72

Fischer A (1892) Phycomycetes. Rabenhorst's Kryptogamenflora 1:505

Göker M, Voglmayr H, Riethmüller A, Oberwinkler F (2007) How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genet Biol 44:105–122

Hudspeth DSS, Nadler SA, Hudspeth MES (2000) A COX2 molecular phylogeny of the Peronosporomycetes. Mycologia 92:674–684

Hudspeth DSS, Stenger D, Hudspeth MES (2003) A cox2 phylogenetic hypothesis for the downy mildews and white rusts. Fungal Divers 13:47–57

Hulvey JP, Padgett DE, Bailey JC (2007) Species boundaries within *Saprolegnia* (Saprolegniales, Oomycota) based on morphological and DNA sequence data. Mycologia 99:421–429

Kageyama K, Nakashima A, Kajihara Y, Suga H, Nelson EB (2005) Phylogenetic and morphological analysis of *Pythium graminicola* and related species. J Gen Plant Path 71:174–182

- Kageyama K, Senda M, Asano T, Suga H, Ishiguro K (2007) Intraisolate heterogeneity of the ITS region of rDNA in *Pythium helicoides*. Mycol Res 111:416–423
- Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby's dictionary of the fungi, 10th edn. CAB International, Wallingford
- Ko WH, Wang SY, Ann PJ (2004) Pythium sukuiense, a new species from undisturbed natural forest in Taiwan. Mycologia 96:647– 649
- Leclerc MC, Guillot J, Deville M (2000) Taxonomic and phylogenetic analysis of Saprolegniaceae (Oomycetes) inferred from LSU rDNA and ITS sequence comparisons. Antonie Van Leeuwenhoek 77:369–377
- Lévesque CA, de Cock AWAM (2004) Molecular phylogeny and taxonomy of the genus *Pythium*. Mycol Res 108:1363–1383
- Lipps PE (1980) A new species of *Pythium* isolated from wheat beneath snow in Washington. Mycologia 72:1127–1133
- Maddison DR, Maddison WP (2000) MacClade 4: Analyses of phylogeny and character evolution. Sinauer Associates, Aunderland, MA
- Martin FN (2000) Phylogenetic relationships among some *Pythium* species inferred from sequence analysis of the mitochondrially encoded cytochrome oxidase II gene. Mycologia 92:711–727
- Martin FN (2008) Mitochondrial haplotype determination in the oomycete plant pathogen *Phytophthora ramorum*. Curr Genet 54:23–34
- Martin FN, Tooley PW (2003) Phylogenetic relationships among *Phytophthora* species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia 95:269–284
- Matsumoto C, Kageyama K, Suga H, Hyakumachi M (1999) Phylogenetic relationships of *Pythium* species based on ITS and 5.8S sequences of the ribosomal DNA. Mycoscience 40:321–331
- Moralejo E, Clemente A, Descals E, Belbahri L, Calmin G, Lefort F, Spies CFJ, McLeod A (2008) *Pythium recalcitrans* sp. nov. revealed by multigene phylogenetic analyses. Mycologia 100:310–319
- Nechwatal J, Mendgen K (2006) *Pythium litorale* sp. nov., a new species from the littoral of Lake Constance, Germany. FEMS Microbiol Lett 225:96–101
- Nechwatal J, Oßwald WF (2003) *Pythium montanum* sp. nov., a new species from a spruce stand in the Bavarian Alps. Mycol Prog 2:73–80
- Nechwatal J, Wielgoss A, Mendgen K (2005) Pythium phragmitis sp. nov., a new species close to P. arrhenomanes as a pathogen of common reed (Phragmites australis). Mycol Res 109:1337–1346
- Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
- Panabieres F, Ponchet M, Allasia V, Cardin L, Ricci P (1997) Characterization of border species among Pythiaceae: several *Pythium* isolates produced elicitins, typical proteins from *Phytophthora* spp. Mycol Res 101:1459–1468
- Paul B (2003) Pythium carbonicum, a new species isolated from a spoil heap in northern France, the ITS region, taxonomy and comparison with related species. FEMS Microbiol Lett 219:269– 274
- Paul B (2006) A new species of *Pythium* isolated from vineyard in France. FEMS Microbiol Lett 263:194–199
- Paul B, Bala K (2008) A new species of *Pythium* with inflated sporangia and coiled antheridia, isolated from India. FEMS Microbiol Lett 282:251–257

- Petersen AB, Rosendahl S (2000) Phylogeny of the Peronosporomycetes (Oomycota) based on partial sequence of the large ribosomal subunit (LSU rDNA). Mycol Res 104:1295–1303
- Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818
- Pringsheim N (1858) Beiträge zur Morphology and Systematik der Algen. 2. Die Saprolegníeen. Jb. wíss. Bot 1:284–306
- Riethmüller A, Weiß M, Oberwinkler F (1999) Phylogenetic studies of Saprolegniomycetidae and related groups based on nuclear large subunit DNA sequences. Can J Bot 77:1790–1800
- Riethmüller A, Voglmayr H, Goker M, Weiβ M, Oberwinkler F (2002) Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia 94:834–849
- Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
- Schröter J (1897) Saprolegniineae III Pythiaceae. Engler & Prantl nat PflFam 1, Abt 1:104–105
- Sideris CP (1931) Taxonomic studies in the family Pythiaceae. 1 Nematosporangium. Mycologia 23:252–295
- Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood- based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690
- Su X (2006) A new species of *Pythium* isolated from mosquito larvae and its ITS region of rDNA. Mycosystema 25:523–528
- Swofford DL (2002) PAUP\*. Phylogenetic analysis using parsimony (\*and other methods), version 4.0b10. Sinauer Associates, Sunderland, MA
- Takahashi M, Ichitani T, Sasaki M (1977) Pythium porphyrae Takahashi et Sasaki, sp. nov. causing red rot of marine red algae Porphyra spp. Trans Mycol Soc Jpn 18:279–285
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882
- Uzuhashi S, Tojo M, Kobayashi S, Tokura K, Kakishima M (2008) First records of *Pythium aquatile* and *P*. macrosporum isolated from soils in Japan. Mycoscience 49:276–279
- Uzuhashi S, Tojo M, Kobayashi S, Kakishima M (2009) *Pythium apinafurcum* sp. nov.: its morphology, molecular phylogeny, and infectivity for plants. Mycoscience 50:281–290
- van der Plaäts-Niterink AJ (1981) Monograph of the genus *Pythium*. Stud Mycol 21:1–242
- Villa NO, Kageyama K, Asano T, Suga H (2006) Phylogenetic relationships of *Pythium* and *Phytophthora* species based on ITS rDNA, cytochrome oxidase II and  $\beta$ -tubulin gene sequences. Mycologia 98:410–422
- Voglmayr H (2003) Phylogenetic relationships of *Peronospora* and related genera based on nuclear ribosomal ITS sequences. Mycol Res 107:1132–1142
- Voglmayr H, Riethmüller A (2006) Phylogenetic relationships of *Albugo* species (white blister rusts) based on LSU rDNA sequence and oospore data. Mycol Res 110:75–85
- Wang PH, White JG (1997) Molecular characterization of *Pythium* species based on RFLP analysis of the internal transcribed spacer region of ribosomal DNA. Physiol Mol Plant Path 51:129–143
- Waterhouse GM (1963) Key to the species of *Phytophthora* de Barry. Mycol Pap 92:1–22
- Yachevskij AA, Yachevskij PA (1931) Opredelitel' gribov (key to the fungi), 1. Phycomycetes. Moscow-Leningrad, 294 pp